ExposurePrediction API Reference¶
pycomptox.exposure.exposureprediction.ExposurePrediction
¶
Bases: CachedAPIClient
Client for accessing exposure prediction data from EPA CompTox Dashboard.
This class provides methods for retrieving estimated exposure rates (mg/kg bodyweight/day) for the U.S. population. Predictions include: - Median estimates (50% confidence) - Upper 95th percentile estimates (95% confidence)
Total population predictions are based on consensus exposure model predictions and the similarity of compounds to chemicals monitored by NHANES. The method was described in the 2018 publication: "Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways".
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
api_key
|
str
|
CompTox API key. If not provided, will attempt to load from saved configuration or COMPTOX_API_KEY environment variable. |
None
|
base_url
|
str
|
Base URL for the CompTox API. Defaults to EPA's endpoint. |
'https://comptox.epa.gov/ctx-api/'
|
time_delay_between_calls
|
float, **kwargs
|
Delay in seconds between API calls for rate limiting. Default is 0.0 (no delay). |
0.0
|
Example
from pycomptox import ExposurePrediction exp_pred = ExposurePrediction()
Get exposure predictions for a chemical¶
data = exp_pred.general_prediction_SEEMs_by_dtxsid("DTXSID0020232")
Source code in src/pycomptox/exposure/exposureprediction.py
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | |
__init__(api_key=None, base_url='https://comptox.epa.gov/ctx-api/', time_delay_between_calls=0.0, **kwargs)
¶
Initialize the ExposurePrediction client.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
api_key
|
Optional[str]
|
CompTox API key (optional, will be loaded from config if not provided) |
None
|
base_url
|
str
|
Base URL for the CompTox API |
'https://comptox.epa.gov/ctx-api/'
|
time_delay_between_calls
|
float
|
Delay between API calls in seconds |
0.0
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If no API key is provided or found in configuration |
Source code in src/pycomptox/exposure/exposureprediction.py
general_prediction_SEEMs_by_dtxsid(dtxsid, projection='ccd-general', use_cache=None)
¶
Get general SEEM exposure predictions for a chemical.
Retrieves Systematic Empirical Evaluation of Models (SEEM) exposure predictions for a specific chemical identified by its DSSTox Substance Identifier (DTXSID). Returns estimates of average (geometric mean) exposure rate (mg/kg bodyweight/day) for the U.S. population.
Predictions include: - Median estimate (50% confidence) - Upper 95th percentile estimate (95% confidence)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dtxsid
|
str
|
DSSTox Substance Identifier (e.g., 'DTXSID0020232') |
required |
projection
|
str
|
Optional projection specification. Default is 'ccd-general'. |
'ccd-general'
|
Returns:
| Type | Description |
|---|---|
List[Dict[str, Any]]
|
List of dictionaries containing SEEM prediction data including: |
List[Dict[str, Any]]
|
|
List[Dict[str, Any]]
|
|
List[Dict[str, Any]]
|
|
List[Dict[str, Any]]
|
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If dtxsid is not a valid non-empty string |
Example
exp_pred = ExposurePrediction() data = exp_pred.general_prediction_SEEMs_by_dtxsid("DTXSID0020232") for pred in data: ... print(f"Median: {pred.get('medianEstimate')} mg/kg/day")
Source code in src/pycomptox/exposure/exposureprediction.py
general_prediction_SEEMs_by_dtxsid_batch(dtxsid_list, use_cache=None)
¶
Get general SEEM exposure predictions for multiple chemicals in a single request.
Retrieves SEEM exposure predictions for multiple chemicals at once using a batch API call. This is more efficient than making individual requests for each chemical when working with multiple DTXSIDs.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
dtxsid_list
|
List[str]
|
List of DSSTox Substance Identifiers |
required |
Returns:
| Type | Description |
|---|---|
List[Dict[str, Any]]
|
List of dictionaries containing SEEM prediction data for all requested |
List[Dict[str, Any]]
|
chemicals. Each entry includes the DTXSID and associated exposure |
List[Dict[str, Any]]
|
predictions (median and 95th percentile estimates). |
Raises:
| Type | Description |
|---|---|
ValueError
|
If dtxsid_list is not a valid non-empty list |
Example
exp_pred = ExposurePrediction() dtxsids = ["DTXSID0020232", "DTXSID0020245"] batch_data = exp_pred.general_prediction_SEEMs_by_dtxsid_batch(dtxsids) for result in batch_data: ... print(f"{result.get('dtxsid')}: {result.get('medianEstimate')} mg/kg/day")