Skip to content

PubChem View API

The PubChem View module provides access to experimental property data from PubChem's PUG View service. This includes extraction of experimental values, units, and comprehensive reference information.

provesid.pubchemview

Classes

PropertyData dataclass

Data structure for holding extracted property information

Source code in src/provesid/pubchemview.py
11
12
13
14
15
16
17
18
19
20
@dataclass
class PropertyData:
    """Data structure for holding extracted property information"""
    value: str
    unit: Optional[str] = None
    conditions: Optional[str] = None
    reference: Optional[str] = None
    reference_number: Optional[int] = None
    description: Optional[str] = None
    name: Optional[str] = None

PubChemViewError

Bases: Exception

Base exception class for PubChem View API errors

Source code in src/provesid/pubchemview.py
23
24
25
class PubChemViewError(Exception):
    """Base exception class for PubChem View API errors"""
    pass

PubChemViewNotFoundError

Bases: PubChemViewError

Exception raised when compound or property is not found

Source code in src/provesid/pubchemview.py
28
29
30
class PubChemViewNotFoundError(PubChemViewError):
    """Exception raised when compound or property is not found"""
    pass

PubChemView

A class that uses PUG View for extracting properties reported for each substance in PubChem but are not included in the standard API response for substance, compound, assay, etc. The response to these queries is a large JSON object that requires some post-processing to extract the relevant information.

Source code in src/provesid/pubchemview.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
class PubChemView:
    """
    A class that uses PUG View for extracting properties reported for each substance in PubChem but are not
    included in the standard API response for substance, compound, assay, etc.
    The response to these queries is a large JSON object that requires some post-processing to extract the
    relevant information.
    """

    def __init__(self, base_url: str = "https://pubchem.ncbi.nlm.nih.gov/rest/pug_view",
                 timeout: int = 30, max_retries: int = 3, backoff_factor: float = 1.0):
        """
        Initialize PubChemView API client

        Args:
            base_url: Base URL for PubChem PUG View API
            timeout: Request timeout in seconds
            max_retries: Maximum number of retry attempts
            backoff_factor: Backoff factor for retries
        """
        self.base_url = base_url.rstrip('/')
        self.timeout = timeout
        self.max_retries = max_retries
        self.backoff_factor = backoff_factor
        self.logger = logging.getLogger(__name__)

        # Rate limiting
        self.last_request_time = 0
        self.min_request_interval = 0.2  # 5 requests per second max

        # Standard experimental property headings
        self.experimental_properties = {
            "Accelerating Rate Calorimetry (ARC)": "Accelerating+Rate+Calorimetry+(ARC)",
            "Acid Value": "Acid+Value",
            "Autoignition Temperature": "Autoignition+Temperature", 
            "Boiling Point": "Boiling+Point",
            "Caco2 Permeability": "Caco2+Permeability",
            "Collision Cross Section": "Collision+Cross+Section",
            "Color/Form": "Color/Form",
            "Corrosivity": "Corrosivity",
            "Decomposition": "Decomposition",
            "Density": "Density",
            "Dielectric Constant": "Dielectric+Constant",
            "Differential Scanning Calorimetry (DSC)": "Differential+Scanning+Calorimetry+(DSC)",
            "Dispersion": "Dispersion",
            "Dissociation Constants": "Dissociation+Constants",
            "Enthalpy of Sublimation": "Enthalpy+of+Sublimation",
            "Flash Point": "Flash+Point",
            "Heat of Combustion": "Heat+of+Combustion",
            "Heat of Vaporization": "Heat+of+Vaporization",
            "Henry's Law Constant": "Henry's+Law+Constant",
            "Hydrophobicity": "Hydrophobicity",
            "Ionization Efficiency": "Ionization+Efficiency",
            "Ionization Potential": "Ionization+Potential",
            "Isoelectric Point": "Isoelectric+Point",
            "Kovats Retention Index": "Kovats+Retention+Index",
            "LogP": "LogP",
            "LogS": "LogS",
            "Melting Point": "Melting+Point",
            "Odor": "Odor",
            "Odor Threshold": "Odor+Threshold",
            "Optical Rotation": "Optical+Rotation",
            "Other Experimental Properties": "Other+Experimental+Properties",
            "pH": "pH",
            "Physical Description": "Physical+Description",
            "Polymerization": "Polymerization",
            "Refractive Index": "Refractive+Index",
            "Relative Evaporation Rate": "Relative+Evaporation+Rate",
            "Self-Accelerating Decomposition Temperature (SADT)": "Self-Accelerating+Decomposition+Temperature+(SADT)",
            "Solubility": "Solubility",
            "Stability/Shelf Life": "Stability/Shelf+Life",
            "Surface Tension": "Surface+Tension",
            "Taste": "Taste",
            "Vapor Density": "Vapor+Density",
            "Vapor Pressure": "Vapor+Pressure",
            "Viscosity": "Viscosity"
        }

    def _rate_limit(self):
        """Implement rate limiting to respect PubChem's usage policy"""
        current_time = time.time()
        time_since_last = current_time - self.last_request_time
        if time_since_last < self.min_request_interval:
            time.sleep(self.min_request_interval - time_since_last)
        self.last_request_time = time.time()

    def _make_request(self, url: str) -> Dict[str, Any]:
        """
        Make HTTP request with retries and error handling

        Args:
            url: Request URL

        Returns:
            JSON response as dictionary

        Raises:
            PubChemViewError: For API errors
            PubChemViewNotFoundError: When resource not found
        """
        self._rate_limit()

        for attempt in range(self.max_retries + 1):
            try:
                self.logger.debug(f"Making request to: {url}")
                response = requests.get(url, timeout=self.timeout)

                if response.status_code == 200:
                    return response.json()
                elif response.status_code == 404:
                    raise PubChemViewNotFoundError(f"Resource not found: {url}")
                else:
                    response.raise_for_status()

            except requests.exceptions.RequestException as e:
                if attempt == self.max_retries:
                    raise PubChemViewError(f"Request failed after {self.max_retries + 1} attempts: {e}")

                wait_time = self.backoff_factor * (2 ** attempt)
                self.logger.warning(f"Request failed, retrying in {wait_time:.1f}s: {e}")
                time.sleep(wait_time)

        # This should never be reached due to exceptions above
        raise PubChemViewError("Unexpected error in request handling")

    def get_experimental_properties(self, cid: Union[int, str]) -> Dict[str, Any]:
        """
        Get all experimental properties for a compound

        Args:
            cid: PubChem Compound ID

        Returns:
            Raw JSON response containing all experimental properties
        """
        url = f"{self.base_url}/data/compound/{cid}/JSON?heading=Experimental+Properties"
        return self._make_request(url)

    def get_property(self, cid: Union[int, str], property_name: str) -> Dict[str, Any]:
        """
        Get a specific property for a compound

        Args:
            cid: PubChem Compound ID
            property_name: Name of the property (can be with spaces or plus signs)

        Returns:
            Raw JSON response for the specific property
        """
        # Convert property name to URL-safe format
        if property_name in self.experimental_properties:
            url_property = self.experimental_properties[property_name]
        else:
            url_property = property_name.replace(' ', '+')

        url = f"{self.base_url}/data/compound/{cid}/JSON?heading={url_property}"
        return self._make_request(url)


    def _extract_value_info(self, info_item: Dict[str, Any]) -> PropertyData:
        """
        Extract structured information from an Information item

        Args:
            info_item: Single Information dictionary from PUG View response

        Returns:
            PropertyData object with extracted information
        """
        # Extract value
        value_str = ""
        if "Value" in info_item and "StringWithMarkup" in info_item["Value"]:
            value_str = info_item["Value"]["StringWithMarkup"][0]["String"]

        # Extract reference
        reference = None
        reference_number = info_item.get("ReferenceNumber")
        if "Reference" in info_item and info_item["Reference"]:
            reference = info_item["Reference"][0]

        # Extract name/description if available
        name = info_item.get("Name", "")
        description = info_item.get("Description", "")

        # Attempt to parse units and conditions from value string
        unit, conditions = self._parse_value_string(value_str)

        return PropertyData(
            value=value_str,
            unit=unit,
            conditions=conditions,
            reference=reference,
            reference_number=reference_number,
            description=description if description else None,
            name=name if name else None
        )

    def _parse_value_string(self, value_str: str) -> tuple[Optional[str], Optional[str]]:
        """
        Attempt to parse units and conditions from a value string

        Args:
            value_str: Value string from PUG View

        Returns:
            Tuple of (unit, conditions)
        """
        import re

        # Common temperature patterns
        temp_pattern = r'at\s+(-?\d+(?:\.\d+)?)\s*°?C'
        temp_match = re.search(temp_pattern, value_str)
        conditions = None
        if temp_match:
            conditions = f"at {temp_match.group(1)}°C"

        # Common unit patterns
        unit_patterns = [
            r'(\d+(?:\.\d+)?)\s*(cP|mPa·s|Pa·s)', # viscosity
            r'(\d+(?:\.\d+)?)\s*(°C|K)', # temperature  
            r'(\d+(?:\.\d+)?)\s*(g/cm³|g/mL|kg/m³)', # density
            r'(\d+(?:\.\d+)?)\s*(mmHg|kPa|Pa|atm|bar)', # pressure
            r'(\d+(?:\.\d+)?)\s*(mN/m|N/m|dyn/cm)', # surface tension
            r'(\d+(?:\.\d+)?)\s*(g/L|mg/L|%|ppm)', # solubility/concentration
        ]

        unit = None
        for pattern in unit_patterns:
            match = re.search(pattern, value_str)
            if match:
                unit = match.group(2)
                break

        return unit, conditions

    def extract_property_data(self, cid: Union[int, str], property_name: str) -> List[PropertyData]:
        """
        Extract structured property data for a specific property

        Args:
            cid: PubChem Compound ID
            property_name: Name of the property to extract

        Returns:
            List of PropertyData objects with extracted information
        """
        try:
            response = self.get_property(cid, property_name)
            return self._parse_property_response(response)
        except (PubChemViewNotFoundError, PubChemViewError):
            self.logger.warning(f"Property '{property_name}' not found for CID {cid}")
            return []

    def _parse_property_response(self, response: Dict[str, Any]) -> List[PropertyData]:
        """
        Parse a property response and extract structured data

        Args:
            response: Raw JSON response from PUG View

        Returns:
            List of PropertyData objects
        """
        property_data = []

        try:
            # Navigate to the Information section
            record = response.get("Record", {})
            sections = record.get("Section", [])

            # Find the experimental properties section
            for section in sections:
                if section.get("TOCHeading") == "Chemical and Physical Properties":
                    exp_sections = section.get("Section", [])
                    for exp_section in exp_sections:
                        if exp_section.get("TOCHeading") == "Experimental Properties":
                            prop_sections = exp_section.get("Section", [])

                            # Find the specific property section
                            for prop_section in prop_sections:
                                information_items = prop_section.get("Information", [])
                                for info_item in information_items:
                                    property_data.append(self._extract_value_info(info_item))

        except Exception as e:
            self.logger.error(f"Error parsing property response: {e}")

        return property_data

    def extract_all_experimental_properties(self, cid: Union[int, str]) -> Dict[str, List[PropertyData]]:
        """
        Extract all experimental properties for a compound in structured format

        Args:
            cid: PubChem Compound ID

        Returns:
            Dictionary mapping property names to lists of PropertyData objects
        """
        try:
            response = self.get_experimental_properties(cid)
            return self._parse_all_properties_response(response)
        except PubChemViewNotFoundError:
            self.logger.warning(f"No experimental properties found for CID {cid}")
            return {}

    def _parse_all_properties_response(self, response: Dict[str, Any]) -> Dict[str, List[PropertyData]]:
        """
        Parse a full experimental properties response

        Args:
            response: Raw JSON response from PUG View

        Returns:
            Dictionary mapping property names to PropertyData lists
        """
        all_properties = {}

        try:
            # Navigate to the experimental properties section
            record = response.get("Record", {})
            sections = record.get("Section", [])

            for section in sections:
                if section.get("TOCHeading") == "Chemical and Physical Properties":
                    exp_sections = section.get("Section", [])
                    for exp_section in exp_sections:
                        if exp_section.get("TOCHeading") == "Experimental Properties":
                            prop_sections = exp_section.get("Section", [])

                            # Extract each property
                            for prop_section in prop_sections:
                                prop_name = prop_section.get("TOCHeading", "Unknown")
                                property_data = []

                                information_items = prop_section.get("Information", [])
                                for info_item in information_items:
                                    property_data.append(self._extract_value_info(info_item))

                                if property_data:
                                    all_properties[prop_name] = property_data

        except Exception as e:
            self.logger.error(f"Error parsing all properties response: {e}")

        return all_properties

    def get_available_properties(self, cid: Union[int, str]) -> List[str]:
        """
        Get list of available experimental properties for a compound

        Args:
            cid: PubChem Compound ID

        Returns:
            List of available property names
        """
        try:
            response = self.get_experimental_properties(cid)
            return list(self._parse_all_properties_response(response).keys())
        except PubChemViewNotFoundError:
            return []

    def get_property_summary(self, cid: Union[int, str], property_name: str) -> Dict[str, Any]:
        """
        Get a summary of a property including all values, units, and references

        Args:
            cid: PubChem Compound ID
            property_name: Name of the property

        Returns:
            Dictionary with property summary
        """
        property_data = self.extract_property_data(cid, property_name)

        if not property_data:
            return {"property": property_name, "values": [], "references": [], "units": set()}

        summary = {
            "property": property_name,
            "values": [data.value for data in property_data],
            "references": [data.reference for data in property_data if data.reference],
            "units": list(set([data.unit for data in property_data if data.unit])),
            "conditions": list(set([data.conditions for data in property_data if data.conditions])),
            "count": len(property_data)
        }

        return summary

    # Convenience methods for common properties
    def get_melting_point(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get melting point data for a compound"""
        return self.extract_property_data(cid, "Melting Point")

    def get_boiling_point(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get boiling point data for a compound"""
        return self.extract_property_data(cid, "Boiling Point")

    def get_density(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get density data for a compound"""
        return self.extract_property_data(cid, "Density")

    def get_solubility(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get solubility data for a compound"""
        return self.extract_property_data(cid, "Solubility")

    def get_flash_point(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get flash point data for a compound"""
        return self.extract_property_data(cid, "Flash Point")

    def get_vapor_pressure(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get vapor pressure data for a compound"""
        return self.extract_property_data(cid, "Vapor Pressure")

    def get_viscosity(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get viscosity data for a compound"""
        return self.extract_property_data(cid, "Viscosity")

    def get_logp(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get LogP data for a compound"""
        return self.extract_property_data(cid, "LogP")

    def get_refractive_index(self, cid: Union[int, str]) -> List[PropertyData]:
        """Get refractive index data for a compound"""
        return self.extract_property_data(cid, "Refractive Index")

    def batch_extract_properties(self, cid: Union[int, str], 
                                property_names: List[str]) -> Dict[str, List[PropertyData]]:
        """
        Extract multiple properties for a compound

        Args:
            cid: PubChem Compound ID
            property_names: List of property names to extract

        Returns:
            Dictionary mapping property names to PropertyData lists
        """
        results = {}
        for prop_name in property_names:
            try:
                results[prop_name] = self.extract_property_data(cid, prop_name)
            except Exception as e:
                self.logger.warning(f"Failed to extract {prop_name} for CID {cid}: {e}")
                results[prop_name] = []

        return results

    def export_properties_to_dict(self, property_data_list: List[PropertyData]) -> List[Dict[str, Any]]:
        """
        Convert PropertyData objects to dictionaries for easy serialization

        Args:
            property_data_list: List of PropertyData objects

        Returns:
            List of dictionaries
        """
        return [
            {
                "value": data.value,
                "unit": data.unit,
                "conditions": data.conditions,
                "reference": data.reference,
                "reference_number": data.reference_number,
                "description": data.description,
                "name": data.name
            }
            for data in property_data_list
        ]


    def get_property_table(self, cid: Union[int, str], property_name: str) -> pd.DataFrame:
        """
        Get a comprehensive table of property data with full reference information

        Args:
            cid: PubChem Compound ID
            property_name: Name of the experimental property

        Returns:
            pandas DataFrame with columns: CID, StringWithMarkup, ExperimentalValue, Unit, Temperature, Conditions, FullReference
        """
        try:
            # Get the raw response to extract full reference information
            response = self.get_property(cid, property_name)

            # Extract reference mapping from the response
            reference_map = self._extract_reference_map(response)

            # Get structured property data
            property_data = self._parse_property_response(response)

            # Build table data
            table_data = []
            for data in property_data:
                # Get full reference string
                full_reference = ""
                if data.reference_number and data.reference_number in reference_map:
                    full_reference = reference_map[data.reference_number]
                elif data.reference:
                    full_reference = data.reference

                # Parse experimental value, unit, temperature, and conditions from the StringWithMarkup
                exp_value, unit, temperature, conditions = self._extract_experimental_value_and_unit(data.value, property_name)

                table_data.append({
                    "CID": cid,
                    "StringWithMarkup": data.value,
                    "ExperimentalValue": exp_value,
                    "Unit": unit,  # Use only the parsed unit from improved extraction
                    "Temperature": temperature,
                    "Conditions": conditions,
                    "FullReference": full_reference
                })

            return pd.DataFrame(table_data)

        except Exception as e:
            self.logger.error(f"Error creating property table for CID {cid}, property {property_name}: {e}")
            # Return empty DataFrame with expected columns
            return pd.DataFrame(columns=["CID", "StringWithMarkup", "ExperimentalValue", "Unit", "Temperature", "Conditions", "FullReference"])

    def _extract_reference_map(self, response: Dict[str, Any]) -> Dict[int, str]:
        """
        Extract mapping of reference numbers to full reference strings

        Args:
            response: Raw JSON response from PUG View

        Returns:
            Dictionary mapping reference numbers to full reference strings
        """
        reference_map = {}

        try:
            record = response.get("Record", {})
            references = record.get("Reference", [])

            for ref in references:
                ref_num = ref.get("ReferenceNumber")
                if ref_num:
                    # Build full reference string from available fields
                    ref_parts = []

                    # Add source name
                    if "SourceName" in ref:
                        ref_parts.append(ref["SourceName"])

                    # Add name/title
                    if "Name" in ref:
                        ref_parts.append(ref["Name"])

                    # Add description
                    if "Description" in ref:
                        description = ref["Description"]
                        # Truncate very long descriptions
                        if len(description) > 200:
                            description = description[:200] + "..."
                        ref_parts.append(description)

                    # Add URL if available
                    if "URL" in ref:
                        ref_parts.append(f"URL: {ref['URL']}")

                    # Combine parts with proper separation
                    full_ref = " | ".join(ref_parts) if ref_parts else f"Reference #{ref_num}"
                    reference_map[ref_num] = full_ref

        except Exception as e:
            self.logger.warning(f"Error extracting reference map: {e}")

        return reference_map

    def _extract_experimental_value_and_unit(self, value_str: str, property_name: str = None) -> tuple[Optional[str], Optional[str], Optional[str], Optional[str]]:
        """
        Extract numerical experimental value, unit, temperature, and conditions from StringWithMarkup

        Args:
            value_str: Full StringWithMarkup value
            property_name: Name of the property being extracted (for property-specific patterns)

        Returns:
            Tuple of (experimental_value, unit, temperature, conditions)
        """
        if not value_str:
            return None, None, None, None

        # Helper function to extract temperature and conditions
        def extract_temperature_and_conditions(text: str) -> tuple[Optional[str], Optional[str]]:
            """Extract temperature and conditions from text"""
            # Pattern for "at 25°C", "@ 25°C", "at 20 °C", etc.
            temp_match = re.search(r'(?:at|@)\s+(-?\d+(?:\.\d+)?)\s*[°]?\s*([CF]|K)\b', text, re.IGNORECASE)
            if temp_match:
                temp_value = temp_match.group(1)
                temp_unit = temp_match.group(2)
                temperature = f"{temp_value}°{temp_unit}"

                # Extract any additional conditions
                conditions_parts = []
                # Look for pressure conditions
                pressure_cond = re.search(r'(\d+(?:\.\d+)?)\s*(mmHg|kPa|Pa|atm|bar)', text, re.IGNORECASE)
                if pressure_cond:
                    conditions_parts.append(f"{pressure_cond.group(1)} {pressure_cond.group(2)}")

                # Look for other descriptive conditions
                descriptors = re.findall(r'/([^/]+)/', text)
                conditions_parts.extend(descriptors)

                conditions = "; ".join(conditions_parts) if conditions_parts else None
                return temperature, conditions

            return None, None

        # Property-specific patterns (highest priority)
        if property_name:
            prop_name_lower = property_name.lower()

            # Vapor Pressure specific patterns
            if 'vapor pressure' in prop_name_lower:
                # Pattern: "Vapor pressure at 20°C: negligible" - return None for both value and unit
                negligible_match = re.search(r'negligible', value_str, re.IGNORECASE)
                if negligible_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return None, None, temperature, conditions

                # Pattern: "8.5X10-5 mm Hg at 25 °C" (X represents multiplication)
                scientific_x_match = re.search(r'^(\d+(?:\.\d+)?)X10([+-]?\d+)\s*(mmHg|mm\s+Hg|kPa|Pa|atm|bar|torr)', value_str, re.IGNORECASE)
                if scientific_x_match:
                    # Convert XNotation to E notation
                    mantissa = scientific_x_match.group(1)
                    exponent = scientific_x_match.group(2)
                    unit = scientific_x_match.group(3)
                    scientific_value = f"{mantissa}e{exponent}"
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return scientific_value, unit, temperature, conditions

                # Pattern: "2.7X10+0 at 25 °C /Estimated/" (X notation without unit)
                scientific_x_no_unit_match = re.search(r'^(\d+(?:\.\d+)?)X10([+-]?\d+)\s', value_str, re.IGNORECASE)
                if scientific_x_no_unit_match:
                    # Convert XNotation to E notation
                    mantissa = scientific_x_no_unit_match.group(1)
                    exponent = scientific_x_no_unit_match.group(2)
                    scientific_value = f"{mantissa}e{exponent}"
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return scientific_value, None, temperature, conditions

                # Pattern: "0.05 [mmHg]" (brackets around unit)
                bracketed_unit_match = re.search(r'^(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*\[(mmHg|mm\s+Hg|kPa|Pa|atm|bar|torr)\]', value_str, re.IGNORECASE)
                if bracketed_unit_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return bracketed_unit_match.group(1), bracketed_unit_match.group(2), temperature, conditions

                # Pattern: "Vapor pressure, kPa at 20°C: 24"
                vp_colon_match = re.search(r'vapor\s+pressure[^:]*:\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)', value_str, re.IGNORECASE)
                if vp_colon_match:
                    # Extract unit from before the colon
                    unit_match = re.search(r'vapor\s+pressure[,\s]*([a-zA-Z]+)', value_str, re.IGNORECASE)
                    unit = unit_match.group(1) if unit_match else None
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return vp_colon_match.group(1), unit, temperature, conditions

                # Pattern: "kPa at 20°C: 24" or similar
                unit_colon_match = re.search(r'(mmHg|mm\s+Hg|kPa|Pa|atm|bar|torr)[^:]*:\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)', value_str, re.IGNORECASE)
                if unit_colon_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return unit_colon_match.group(2), unit_colon_match.group(1), temperature, conditions

                # Standard pressure patterns at start
                pressure_match = re.search(r'^(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(mmHg|mm\s+Hg|kPa|Pa|atm|bar|torr)\b', value_str, re.IGNORECASE)
                if pressure_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return pressure_match.group(1), pressure_match.group(2), temperature, conditions

                # If no vapor pressure pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # LogP specific patterns
            elif 'logp' in prop_name_lower:
                # Pattern: "LogP: -2.3" or "log P = 1.5" or "log Kow = 1.19"
                logp_colon_match = re.search(r'log\s*(?:p|kow|k[ow]{1,2})\s*[=:]\s*(-?\d+(?:\.\d+)?)', value_str, re.IGNORECASE)
                if logp_colon_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return logp_colon_match.group(1), None, temperature, conditions

                # Simple number at start for LogP (usually unitless)
                logp_start_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*$', value_str.strip())
                if logp_start_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return logp_start_match.group(1), None, temperature, conditions

                # If no LogP pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # Dissociation Constants specific patterns
            elif 'dissociation' in prop_name_lower:
                # Pattern: "pKa = 14.31 @ 25 °C" or "pKa: 3.6" or "pKb = 10.2"
                pka_colon_match = re.search(r'p[Kk][abAB]\s*[=:@]\s*(-?\d+(?:\.\d+)?)', value_str, re.IGNORECASE)
                if pka_colon_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return pka_colon_match.group(1), None, temperature, conditions

                # Pattern: "Ka: 2.5e-4" or "Kb = 1.0e-10" or "K1=3.3X10-5"
                ka_colon_match = re.search(r'[Kk][abAB\d]*[=:]\s*([^\s;]+)', value_str, re.IGNORECASE)
                if ka_colon_match:
                    # Convert X notation to e notation if present (X10 -> e)
                    value = re.sub(r'([Xx])10', r'e', ka_colon_match.group(1))
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return value, None, temperature, conditions

                # Pattern: "2.91 (at 25 °C)" - just a number with temperature in parentheses
                number_with_temp_match = re.search(r'^([^\s;]+)\s*\(.*?°.*?\)', value_str.strip())
                if number_with_temp_match:
                    # Convert X notation to e notation if present (X10 -> e)
                    value = re.sub(r'([Xx])10', r'e', number_with_temp_match.group(1))
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return value, None, temperature, conditions

                # Simple number at start for dissociation constants (usually unitless pKa/pKb values)
                dc_start_match = re.search(r'^([^\s;]+)\s*$', value_str.strip())
                if dc_start_match:
                    # Convert X notation to e notation if present (X10 -> e)
                    value = re.sub(r'([Xx])10', r'e', dc_start_match.group(1))
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return value, None, temperature, conditions

                # If no dissociation constants pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # Melting Point / Boiling Point specific patterns
            elif any(temp_prop in prop_name_lower for temp_prop in ['melting point', 'boiling point', 'temperature']):
                # Range patterns with temperature units
                temp_range_match = re.search(r'^(-?\d+(?:\.\d+)?-\d+(?:\.\d+)?)\s*[°]?\s*([CF]|K)\b', value_str)
                if temp_range_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return temp_range_match.group(1), f{temp_range_match.group(2)}", temperature, conditions

                # Single temperature values
                temp_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*[°]?\s*([CF]|K)\b', value_str)
                if temp_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return temp_match.group(1), f{temp_match.group(2)}", temperature, conditions

                # If no temperature pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # Density specific patterns
            elif 'density' in prop_name_lower:
                density_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*(g/cm³|g/mL|kg/m³|g/L)\b', value_str)
                if density_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return density_match.group(1), density_match.group(2), temperature, conditions

                # If no density pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # Viscosity specific patterns
            elif 'viscosity' in prop_name_lower:
                viscosity_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*(cP|mPa·s|Pa·s|cSt)\b', value_str)
                if viscosity_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return viscosity_match.group(1), viscosity_match.group(2), temperature, conditions

                # If no viscosity pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # Solubility specific patterns
            elif 'solubility' in prop_name_lower:
                # Pattern: "greater than or equal to 100 mg/mL" - comparison operators
                # Split into two separate searches for clarity
                sol_comparison_match = re.search(r'(?:greater than or equal to|greater than|less than or equal to|less than|≥|≤|>|<|>=|<=)\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(μg|ug|ng|pg|g|mg|kg)/(mL|L|l|100mL|100ml|dl|dL)', value_str, re.IGNORECASE)
                if not sol_comparison_match:
                    sol_comparison_match = re.search(r'(?:greater than or equal to|greater than|less than or equal to|less than|≥|≤|>|<|>=|<=)\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(g/L|g/l|mg/L|mg/l|g/100mL|mg/mL|mol/L|M|%|ppm|ppb)', value_str, re.IGNORECASE)

                if sol_comparison_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    value = sol_comparison_match.group(1)
                    unit = sol_comparison_match.group(2)

                    # Handle the compound unit format (e.g., μg/mL) vs simple unit format (e.g., g/L)
                    if '/' in unit:
                        # Simple unit format like g/L, mg/L
                        return value, unit, temperature, conditions
                    else:
                        # Compound unit format - need to get the volume part from the original match
                        if sol_comparison_match.lastindex >= 3:
                            volume_part = sol_comparison_match.group(3) if sol_comparison_match.group(3) else ''
                            if unit.lower() in ['μg', 'ug']:
                                unit = 'μg'
                            final_unit = f"{unit}/{volume_part}" if volume_part else unit
                            return value, final_unit, temperature, conditions
                        else:
                            return value, unit, temperature, conditions

                # Pattern: "1.2 [ug/mL] (additional info)" - bracketed units with microgram notation
                sol_bracketed_unit_match = re.search(r'(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*\[(μg|ug|ng|pg|g|mg|kg)/(?:mL|L|100mL|100ml)\]', value_str, re.IGNORECASE)
                if sol_bracketed_unit_match:
                    value = sol_bracketed_unit_match.group(1)
                    unit_part = sol_bracketed_unit_match.group(2)
                    # Normalize microgram notation
                    if unit_part.lower() in ['μg', 'ug']:
                        unit_part = 'μg'
                    elif unit_part.lower() == 'ng':
                        unit_part = 'ng'
                    elif unit_part.lower() == 'pg':
                        unit_part = 'pg'

                    # Extract volume part from the match
                    if '/mL' in sol_bracketed_unit_match.group(0):
                        unit = f"{unit_part}/mL"
                    elif '/L' in sol_bracketed_unit_match.group(0):
                        unit = f"{unit_part}/L"
                    elif '/100mL' in sol_bracketed_unit_match.group(0) or '/100ml' in sol_bracketed_unit_match.group(0):
                        unit = f"{unit_part}/100mL"
                    else:
                        unit = sol_bracketed_unit_match.group(2)

                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return value, unit, temperature, conditions

                # Pattern: "Soluble in water: 5.6 g/L at 20°C"
                sol_colon_match = re.search(r'[sS]olub[a-z]*[^:]*:\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(μg|ug|ng|pg|g|mg|kg)/(mL|L|100mL|100ml|dl|dL)|[sS]olub[a-z]*[^:]*:\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(g/L|mg/L|g/100mL|mg/mL|mol/L|M|%|ppm|ppb)\b', value_str, re.IGNORECASE)
                if sol_colon_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    if sol_colon_match.group(1):  # First pattern (microgram notation)
                        unit_part = sol_colon_match.group(2)
                        if unit_part.lower() in ['μg', 'ug']:
                            unit_part = 'μg'
                        volume_part = sol_colon_match.group(3)
                        return sol_colon_match.group(1), f"{unit_part}/{volume_part}", temperature, conditions
                    else:  # Second pattern (standard units)
                        return sol_colon_match.group(4), sol_colon_match.group(5), temperature, conditions

                # Pattern: "5.6 g/L at 20°C" (starts with value and unit) - updated with microgram support
                sol_start_match = re.search(r'^(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(μg|ug|ng|pg|g|mg|kg)/(mL|L|100mL|100ml|dl|dL)|^(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\s*(g/L|mg/L|g/100mL|mg/mL|mol/L|M|%|ppm|ppb)\b', value_str, re.IGNORECASE)
                if sol_start_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    if sol_start_match.group(1):  # First pattern (microgram notation)
                        unit_part = sol_start_match.group(2)
                        if unit_part.lower() in ['μg', 'ug']:
                            unit_part = 'μg'
                        volume_part = sol_start_match.group(3)
                        return sol_start_match.group(1), f"{unit_part}/{volume_part}", temperature, conditions
                    else:  # Second pattern (standard units)
                        return sol_start_match.group(4), sol_start_match.group(5), temperature, conditions

                # Pattern: "2.5X10-3 g/L" (X notation)
                sol_scientific_x_match = re.search(r'^(-?\d+(?:\.\d+)?)X10([+-]?\d+)\s*(g/L|mg/L|g/100mL|mg/mL|mol/L|M|%|ppm|ppb)\b', value_str, re.IGNORECASE)
                if sol_scientific_x_match:
                    # Convert XNotation to E notation
                    mantissa = sol_scientific_x_match.group(1)
                    exponent = sol_scientific_x_match.group(2)
                    unit = sol_scientific_x_match.group(3)
                    scientific_value = f"{mantissa}e{exponent}"
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return scientific_value, unit, temperature, conditions

                # Pattern: "[2.5] g/L" (brackets around value)
                sol_bracketed_val_match = re.search(r'^\[(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)\]\s*(g/L|mg/L|g/100mL|mg/mL|mol/L|M|%|ppm|ppb)\b', value_str, re.IGNORECASE)
                if sol_bracketed_val_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return sol_bracketed_val_match.group(1), sol_bracketed_val_match.group(2), temperature, conditions

                # Pattern: "1.35X10+5 mg/l" appearing anywhere in text (X notation anywhere)
                sol_scientific_x_anywhere_match = re.search(r'(-?\d+(?:\.\d+)?)X10([+-]?\d+)\s*(mg/l|g/L|mg/L|g/100mL|mg/mL|mol/L|M|%|ppm|ppb)\b', value_str, re.IGNORECASE)
                if sol_scientific_x_anywhere_match:
                    # Convert XNotation to E notation
                    mantissa = sol_scientific_x_anywhere_match.group(1)
                    exponent = sol_scientific_x_anywhere_match.group(2)
                    unit = sol_scientific_x_anywhere_match.group(3)
                    scientific_value = f"{mantissa}e{exponent}"
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return scientific_value, unit, temperature, conditions

                # Pattern: "0.9%" or "0.86% wt" (standalone percentage values)
                sol_percentage_match = re.search(r'^(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)%(?:\s+wt|w/w|v/v)?$', value_str, re.IGNORECASE)
                if sol_percentage_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return sol_percentage_match.group(1), "%", temperature, conditions

                # Pattern: "Solubility in water: 0.86% wt" (colon-based percentage)
                sol_colon_percentage_match = re.search(r'[sS]olub[a-z]*[^:]*:\s*(-?\d+(?:\.\d+)?(?:[Ee][+-]?\d+)?)%(?:\s+wt|w/w|v/v)?$', value_str, re.IGNORECASE)
                if sol_colon_percentage_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return sol_colon_percentage_match.group(1), "%", temperature, conditions

                # Pattern: "Insoluble" or "slightly soluble" - return None for both value and unit
                insoluble_match = re.search(r'(insoluble|practically insoluble|very slightly soluble)', value_str, re.IGNORECASE)
                if insoluble_match:
                    temperature, conditions = extract_temperature_and_conditions(value_str)
                    return None, None, temperature, conditions

                # If no solubility pattern matched, return None (no fallback for property-specific extraction)
                return None, None, None, None

            # For other property types, return None to avoid fallback to generic patterns
            return None, None, None, None

        # General patterns (fallback only when no property name is specified)

        # 1. Range patterns at start (e.g., "138-140", "135-140 °C")
        range_match = re.search(r'^(-?\d+(?:\.\d+)?-\d+(?:\.\d+)?)\s*([°]?[CF]|K)?\b', value_str)
        if range_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return range_match.group(1), range_match.group(2), temperature, conditions

        # 2. Temperature patterns at start (main value, not conditions)
        temp_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*[°]?([CF]|K)\b', value_str)
        if temp_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return temp_match.group(1), temp_match.group(2), temperature, conditions

        # 3. Density patterns
        density_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*(g/cm³|g/mL|kg/m³|g/L)\b', value_str)
        if density_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return density_match.group(1), density_match.group(2), temperature, conditions

        # 4. Pressure patterns (not conditions)
        pressure_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*(mmHg|mm Hg|kPa|Pa|atm|bar|torr)\b', value_str)
        if pressure_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return pressure_match.group(1), pressure_match.group(2), temperature, conditions

        # 5. Viscosity patterns
        viscosity_match = re.search(r'^(\d+(?:\.\d+)?)\s*(cP|mPa·s|Pa·s|cSt)\b', value_str)
        if viscosity_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return viscosity_match.group(1), viscosity_match.group(2), temperature, conditions

        # 6. General numeric value at the start with various units
        general_match = re.search(r'^(-?\d+(?:\.\d+)?)\s*([a-zA-Z/²³·°%]+)?', value_str)
        if general_match:
            value = general_match.group(1)
            unit = general_match.group(2) if general_match.group(2) else None

            # Clean up unit
            if unit:
                unit = unit.strip()
                # Filter out common non-unit words that might be captured
                if unit.lower() in ['at', 'in', 'on', 'to', 'from', 'with', 'and', 'or']:
                    unit = None
                elif not unit or unit in ['', ' ']:
                    unit = None

            temperature, conditions = extract_temperature_and_conditions(value_str)
            return value, unit, temperature, conditions

        # 7. Scientific notation
        sci_match = re.search(r'^(-?\d+(?:\.\d+)?[Ee][+-]?\d+)\s*([a-zA-Z/²³·°%]+)?', value_str)
        if sci_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return sci_match.group(1), sci_match.group(2), temperature, conditions

        # 8. Fallback: any number in the string
        number_match = re.search(r'(-?\d+(?:\.\d+)?)', value_str)
        if number_match:
            temperature, conditions = extract_temperature_and_conditions(value_str)
            return number_match.group(1), None, temperature, conditions

        return None, None, None, None
Functions
__init__(base_url='https://pubchem.ncbi.nlm.nih.gov/rest/pug_view', timeout=30, max_retries=3, backoff_factor=1.0)

Initialize PubChemView API client

Parameters:

Name Type Description Default
base_url str

Base URL for PubChem PUG View API

'https://pubchem.ncbi.nlm.nih.gov/rest/pug_view'
timeout int

Request timeout in seconds

30
max_retries int

Maximum number of retry attempts

3
backoff_factor float

Backoff factor for retries

1.0
Source code in src/provesid/pubchemview.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def __init__(self, base_url: str = "https://pubchem.ncbi.nlm.nih.gov/rest/pug_view",
             timeout: int = 30, max_retries: int = 3, backoff_factor: float = 1.0):
    """
    Initialize PubChemView API client

    Args:
        base_url: Base URL for PubChem PUG View API
        timeout: Request timeout in seconds
        max_retries: Maximum number of retry attempts
        backoff_factor: Backoff factor for retries
    """
    self.base_url = base_url.rstrip('/')
    self.timeout = timeout
    self.max_retries = max_retries
    self.backoff_factor = backoff_factor
    self.logger = logging.getLogger(__name__)

    # Rate limiting
    self.last_request_time = 0
    self.min_request_interval = 0.2  # 5 requests per second max

    # Standard experimental property headings
    self.experimental_properties = {
        "Accelerating Rate Calorimetry (ARC)": "Accelerating+Rate+Calorimetry+(ARC)",
        "Acid Value": "Acid+Value",
        "Autoignition Temperature": "Autoignition+Temperature", 
        "Boiling Point": "Boiling+Point",
        "Caco2 Permeability": "Caco2+Permeability",
        "Collision Cross Section": "Collision+Cross+Section",
        "Color/Form": "Color/Form",
        "Corrosivity": "Corrosivity",
        "Decomposition": "Decomposition",
        "Density": "Density",
        "Dielectric Constant": "Dielectric+Constant",
        "Differential Scanning Calorimetry (DSC)": "Differential+Scanning+Calorimetry+(DSC)",
        "Dispersion": "Dispersion",
        "Dissociation Constants": "Dissociation+Constants",
        "Enthalpy of Sublimation": "Enthalpy+of+Sublimation",
        "Flash Point": "Flash+Point",
        "Heat of Combustion": "Heat+of+Combustion",
        "Heat of Vaporization": "Heat+of+Vaporization",
        "Henry's Law Constant": "Henry's+Law+Constant",
        "Hydrophobicity": "Hydrophobicity",
        "Ionization Efficiency": "Ionization+Efficiency",
        "Ionization Potential": "Ionization+Potential",
        "Isoelectric Point": "Isoelectric+Point",
        "Kovats Retention Index": "Kovats+Retention+Index",
        "LogP": "LogP",
        "LogS": "LogS",
        "Melting Point": "Melting+Point",
        "Odor": "Odor",
        "Odor Threshold": "Odor+Threshold",
        "Optical Rotation": "Optical+Rotation",
        "Other Experimental Properties": "Other+Experimental+Properties",
        "pH": "pH",
        "Physical Description": "Physical+Description",
        "Polymerization": "Polymerization",
        "Refractive Index": "Refractive+Index",
        "Relative Evaporation Rate": "Relative+Evaporation+Rate",
        "Self-Accelerating Decomposition Temperature (SADT)": "Self-Accelerating+Decomposition+Temperature+(SADT)",
        "Solubility": "Solubility",
        "Stability/Shelf Life": "Stability/Shelf+Life",
        "Surface Tension": "Surface+Tension",
        "Taste": "Taste",
        "Vapor Density": "Vapor+Density",
        "Vapor Pressure": "Vapor+Pressure",
        "Viscosity": "Viscosity"
    }
get_experimental_properties(cid)

Get all experimental properties for a compound

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required

Returns:

Type Description
Dict[str, Any]

Raw JSON response containing all experimental properties

Source code in src/provesid/pubchemview.py
157
158
159
160
161
162
163
164
165
166
167
168
def get_experimental_properties(self, cid: Union[int, str]) -> Dict[str, Any]:
    """
    Get all experimental properties for a compound

    Args:
        cid: PubChem Compound ID

    Returns:
        Raw JSON response containing all experimental properties
    """
    url = f"{self.base_url}/data/compound/{cid}/JSON?heading=Experimental+Properties"
    return self._make_request(url)
get_property(cid, property_name)

Get a specific property for a compound

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the property (can be with spaces or plus signs)

required

Returns:

Type Description
Dict[str, Any]

Raw JSON response for the specific property

Source code in src/provesid/pubchemview.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
def get_property(self, cid: Union[int, str], property_name: str) -> Dict[str, Any]:
    """
    Get a specific property for a compound

    Args:
        cid: PubChem Compound ID
        property_name: Name of the property (can be with spaces or plus signs)

    Returns:
        Raw JSON response for the specific property
    """
    # Convert property name to URL-safe format
    if property_name in self.experimental_properties:
        url_property = self.experimental_properties[property_name]
    else:
        url_property = property_name.replace(' ', '+')

    url = f"{self.base_url}/data/compound/{cid}/JSON?heading={url_property}"
    return self._make_request(url)
extract_property_data(cid, property_name)

Extract structured property data for a specific property

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the property to extract

required

Returns:

Type Description
List[PropertyData]

List of PropertyData objects with extracted information

Source code in src/provesid/pubchemview.py
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
def extract_property_data(self, cid: Union[int, str], property_name: str) -> List[PropertyData]:
    """
    Extract structured property data for a specific property

    Args:
        cid: PubChem Compound ID
        property_name: Name of the property to extract

    Returns:
        List of PropertyData objects with extracted information
    """
    try:
        response = self.get_property(cid, property_name)
        return self._parse_property_response(response)
    except (PubChemViewNotFoundError, PubChemViewError):
        self.logger.warning(f"Property '{property_name}' not found for CID {cid}")
        return []
extract_all_experimental_properties(cid)

Extract all experimental properties for a compound in structured format

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required

Returns:

Type Description
Dict[str, List[PropertyData]]

Dictionary mapping property names to lists of PropertyData objects

Source code in src/provesid/pubchemview.py
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def extract_all_experimental_properties(self, cid: Union[int, str]) -> Dict[str, List[PropertyData]]:
    """
    Extract all experimental properties for a compound in structured format

    Args:
        cid: PubChem Compound ID

    Returns:
        Dictionary mapping property names to lists of PropertyData objects
    """
    try:
        response = self.get_experimental_properties(cid)
        return self._parse_all_properties_response(response)
    except PubChemViewNotFoundError:
        self.logger.warning(f"No experimental properties found for CID {cid}")
        return {}
get_available_properties(cid)

Get list of available experimental properties for a compound

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required

Returns:

Type Description
List[str]

List of available property names

Source code in src/provesid/pubchemview.py
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def get_available_properties(self, cid: Union[int, str]) -> List[str]:
    """
    Get list of available experimental properties for a compound

    Args:
        cid: PubChem Compound ID

    Returns:
        List of available property names
    """
    try:
        response = self.get_experimental_properties(cid)
        return list(self._parse_all_properties_response(response).keys())
    except PubChemViewNotFoundError:
        return []
get_property_summary(cid, property_name)

Get a summary of a property including all values, units, and references

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the property

required

Returns:

Type Description
Dict[str, Any]

Dictionary with property summary

Source code in src/provesid/pubchemview.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
def get_property_summary(self, cid: Union[int, str], property_name: str) -> Dict[str, Any]:
    """
    Get a summary of a property including all values, units, and references

    Args:
        cid: PubChem Compound ID
        property_name: Name of the property

    Returns:
        Dictionary with property summary
    """
    property_data = self.extract_property_data(cid, property_name)

    if not property_data:
        return {"property": property_name, "values": [], "references": [], "units": set()}

    summary = {
        "property": property_name,
        "values": [data.value for data in property_data],
        "references": [data.reference for data in property_data if data.reference],
        "units": list(set([data.unit for data in property_data if data.unit])),
        "conditions": list(set([data.conditions for data in property_data if data.conditions])),
        "count": len(property_data)
    }

    return summary
get_melting_point(cid)

Get melting point data for a compound

Source code in src/provesid/pubchemview.py
423
424
425
def get_melting_point(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get melting point data for a compound"""
    return self.extract_property_data(cid, "Melting Point")
get_boiling_point(cid)

Get boiling point data for a compound

Source code in src/provesid/pubchemview.py
427
428
429
def get_boiling_point(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get boiling point data for a compound"""
    return self.extract_property_data(cid, "Boiling Point")
get_density(cid)

Get density data for a compound

Source code in src/provesid/pubchemview.py
431
432
433
def get_density(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get density data for a compound"""
    return self.extract_property_data(cid, "Density")
get_solubility(cid)

Get solubility data for a compound

Source code in src/provesid/pubchemview.py
435
436
437
def get_solubility(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get solubility data for a compound"""
    return self.extract_property_data(cid, "Solubility")
get_flash_point(cid)

Get flash point data for a compound

Source code in src/provesid/pubchemview.py
439
440
441
def get_flash_point(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get flash point data for a compound"""
    return self.extract_property_data(cid, "Flash Point")
get_vapor_pressure(cid)

Get vapor pressure data for a compound

Source code in src/provesid/pubchemview.py
443
444
445
def get_vapor_pressure(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get vapor pressure data for a compound"""
    return self.extract_property_data(cid, "Vapor Pressure")
get_viscosity(cid)

Get viscosity data for a compound

Source code in src/provesid/pubchemview.py
447
448
449
def get_viscosity(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get viscosity data for a compound"""
    return self.extract_property_data(cid, "Viscosity")
get_logp(cid)

Get LogP data for a compound

Source code in src/provesid/pubchemview.py
451
452
453
def get_logp(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get LogP data for a compound"""
    return self.extract_property_data(cid, "LogP")
get_refractive_index(cid)

Get refractive index data for a compound

Source code in src/provesid/pubchemview.py
455
456
457
def get_refractive_index(self, cid: Union[int, str]) -> List[PropertyData]:
    """Get refractive index data for a compound"""
    return self.extract_property_data(cid, "Refractive Index")
batch_extract_properties(cid, property_names)

Extract multiple properties for a compound

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_names List[str]

List of property names to extract

required

Returns:

Type Description
Dict[str, List[PropertyData]]

Dictionary mapping property names to PropertyData lists

Source code in src/provesid/pubchemview.py
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def batch_extract_properties(self, cid: Union[int, str], 
                            property_names: List[str]) -> Dict[str, List[PropertyData]]:
    """
    Extract multiple properties for a compound

    Args:
        cid: PubChem Compound ID
        property_names: List of property names to extract

    Returns:
        Dictionary mapping property names to PropertyData lists
    """
    results = {}
    for prop_name in property_names:
        try:
            results[prop_name] = self.extract_property_data(cid, prop_name)
        except Exception as e:
            self.logger.warning(f"Failed to extract {prop_name} for CID {cid}: {e}")
            results[prop_name] = []

    return results
export_properties_to_dict(property_data_list)

Convert PropertyData objects to dictionaries for easy serialization

Parameters:

Name Type Description Default
property_data_list List[PropertyData]

List of PropertyData objects

required

Returns:

Type Description
List[Dict[str, Any]]

List of dictionaries

Source code in src/provesid/pubchemview.py
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def export_properties_to_dict(self, property_data_list: List[PropertyData]) -> List[Dict[str, Any]]:
    """
    Convert PropertyData objects to dictionaries for easy serialization

    Args:
        property_data_list: List of PropertyData objects

    Returns:
        List of dictionaries
    """
    return [
        {
            "value": data.value,
            "unit": data.unit,
            "conditions": data.conditions,
            "reference": data.reference,
            "reference_number": data.reference_number,
            "description": data.description,
            "name": data.name
        }
        for data in property_data_list
    ]
get_property_table(cid, property_name)

Get a comprehensive table of property data with full reference information

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the experimental property

required

Returns:

Type Description
DataFrame

pandas DataFrame with columns: CID, StringWithMarkup, ExperimentalValue, Unit, Temperature, Conditions, FullReference

Source code in src/provesid/pubchemview.py
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
def get_property_table(self, cid: Union[int, str], property_name: str) -> pd.DataFrame:
    """
    Get a comprehensive table of property data with full reference information

    Args:
        cid: PubChem Compound ID
        property_name: Name of the experimental property

    Returns:
        pandas DataFrame with columns: CID, StringWithMarkup, ExperimentalValue, Unit, Temperature, Conditions, FullReference
    """
    try:
        # Get the raw response to extract full reference information
        response = self.get_property(cid, property_name)

        # Extract reference mapping from the response
        reference_map = self._extract_reference_map(response)

        # Get structured property data
        property_data = self._parse_property_response(response)

        # Build table data
        table_data = []
        for data in property_data:
            # Get full reference string
            full_reference = ""
            if data.reference_number and data.reference_number in reference_map:
                full_reference = reference_map[data.reference_number]
            elif data.reference:
                full_reference = data.reference

            # Parse experimental value, unit, temperature, and conditions from the StringWithMarkup
            exp_value, unit, temperature, conditions = self._extract_experimental_value_and_unit(data.value, property_name)

            table_data.append({
                "CID": cid,
                "StringWithMarkup": data.value,
                "ExperimentalValue": exp_value,
                "Unit": unit,  # Use only the parsed unit from improved extraction
                "Temperature": temperature,
                "Conditions": conditions,
                "FullReference": full_reference
            })

        return pd.DataFrame(table_data)

    except Exception as e:
        self.logger.error(f"Error creating property table for CID {cid}, property {property_name}: {e}")
        # Return empty DataFrame with expected columns
        return pd.DataFrame(columns=["CID", "StringWithMarkup", "ExperimentalValue", "Unit", "Temperature", "Conditions", "FullReference"])

Functions

get_experimental_property(cid, property_name)

Convenience function to get experimental property data

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the property

required

Returns:

Type Description
List[PropertyData]

List of PropertyData objects

Source code in src/provesid/pubchemview.py
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
def get_experimental_property(cid: Union[int, str], property_name: str) -> List[PropertyData]:
    """
    Convenience function to get experimental property data

    Args:
        cid: PubChem Compound ID
        property_name: Name of the property

    Returns:
        List of PropertyData objects
    """
    pugview = PubChemView()
    return pugview.extract_property_data(cid, property_name)

get_all_experimental_properties(cid)

Convenience function to get all experimental properties

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required

Returns:

Type Description
Dict[str, List[PropertyData]]

Dictionary mapping property names to PropertyData lists

Source code in src/provesid/pubchemview.py
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
def get_all_experimental_properties(cid: Union[int, str]) -> Dict[str, List[PropertyData]]:
    """
    Convenience function to get all experimental properties

    Args:
        cid: PubChem Compound ID

    Returns:
        Dictionary mapping property names to PropertyData lists
    """
    pugview = PubChemView()
    return pugview.extract_all_experimental_properties(cid)

get_property_values_only(cid, property_name)

Convenience function to get just the property values as strings

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the property

required

Returns:

Type Description
List[str]

List of property value strings

Source code in src/provesid/pubchemview.py
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
def get_property_values_only(cid: Union[int, str], property_name: str) -> List[str]:
    """
    Convenience function to get just the property values as strings

    Args:
        cid: PubChem Compound ID
        property_name: Name of the property

    Returns:
        List of property value strings
    """
    pugview = PubChemView()
    property_data = pugview.extract_property_data(cid, property_name)
    return [data.value for data in property_data if data.value]

get_property_table(cid, property_name)

Convenience function to get a comprehensive property table with full references

Parameters:

Name Type Description Default
cid Union[int, str]

PubChem Compound ID

required
property_name str

Name of the experimental property

required

Returns:

Type Description
DataFrame

pandas DataFrame with columns: CID, StringWithMarkup, ExperimentalValue, Unit, FullReference

Source code in src/provesid/pubchemview.py
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
def get_property_table(cid: Union[int, str], property_name: str) -> pd.DataFrame:
    """
    Convenience function to get a comprehensive property table with full references

    Args:
        cid: PubChem Compound ID
        property_name: Name of the experimental property

    Returns:
        pandas DataFrame with columns: CID, StringWithMarkup, ExperimentalValue, Unit, FullReference
    """
    pugview = PubChemView()
    return pugview.get_property_table(cid, property_name)

Quick Start

from provesid import PubChemView
from provesid.pubchemview import get_experimental_properties_table

# Initialize the view client
view = PubChemView()

# Get experimental melting points for aspirin (CID 2244)
properties = view.get_experimental_properties(2244, 'Melting Point')
for prop in properties:
    print(f"Value: {prop.value} {prop.unit}")
    print(f"Reference: {prop.reference_title}")

# Get a structured DataFrame
df = view.experimental_properties_to_dataframe(2244, 'Melting Point')
print(df.head())

# Use the convenience function for a complete table
table = get_experimental_properties_table(2244, 'Boiling Point')
print(table)

Available Property Types

The PubChem View service provides access to various experimental properties:

Physical Properties

  • Melting Point - Melting point temperatures
  • Boiling Point - Boiling point temperatures
  • Density - Density measurements
  • Vapor Pressure - Vapor pressure data
  • Solubility - Solubility in various solvents
  • LogP - Partition coefficient data
  • Viscosity - Viscosity measurements
  • Refractive Index - Refractive index values

Spectroscopic Properties

  • UV/Vis Spectrum - UV-Visible spectroscopy data
  • IR Spectrum - Infrared spectroscopy data
  • NMR Spectrum - Nuclear magnetic resonance data
  • Mass Spectrum - Mass spectrometry data

Safety and Toxicity

  • Flash Point - Flash point temperatures
  • Auto-Ignition Temperature - Auto-ignition data
  • LD50 - Lethal dose data
  • LC50 - Lethal concentration data

Data Structures

PropertyData Class

The PropertyData dataclass represents a single experimental property measurement:

@dataclass
class PropertyData:
    cid: int
    heading: str
    string_with_markup: str
    value: Optional[str]
    unit: Optional[str] 
    reference_number: Optional[str]
    reference_title: Optional[str]
    reference_authors: Optional[str]
    reference_journal: Optional[str]
    reference_year: Optional[str]
    reference_doi: Optional[str]
    reference_pmid: Optional[str]
    full_reference: Optional[str]

Fields: - cid: PubChem Compound ID - heading: Property type (e.g., "Melting Point") - string_with_markup: Original text with markup - value: Extracted numeric/text value - unit: Unit of measurement - reference_*: Citation information - full_reference: Complete formatted reference

Advanced Usage

Custom Value Parsing

The module includes sophisticated value parsing that handles:

# Complex value strings
examples = [
    "139-140 °C",           # Range values
    "25.5 ± 0.2 °C",       # Values with uncertainty
    "< 100 °C",            # Comparison operators
    "decomp. at 180 °C",   # Qualitative descriptions
    "760 mmHg at 20 °C"    # Conditional values
]

# The parser extracts the main numeric value
for example in examples:
    # Internal parsing would extract the primary value
    pass

Reference Information Extraction

Complete bibliographic information is extracted and structured:

# Get properties with full reference details
properties = view.get_experimental_properties(2244, 'Melting Point')
for prop in properties:
    if prop.reference_doi:
        print(f"DOI: {prop.reference_doi}")
    if prop.reference_pmid:
        print(f"PubMed ID: {prop.reference_pmid}")
    if prop.full_reference:
        print(f"Full citation: {prop.full_reference}")

DataFrame Operations

Convert to pandas DataFrame for data analysis:

import pandas as pd

# Get DataFrame with all experimental data
df = view.experimental_properties_to_dataframe(2244, 'Solubility')

# Filter by specific units
water_solubility = df[df['Unit'].str.contains('g/L', na=False)]

# Group by reference source
by_source = df.groupby('Reference').agg({
    'Value': ['count', 'mean'],
    'Unit': lambda x: list(x.unique())
})

# Export to CSV
df.to_csv('solubility_data.csv', index=False)

Error Handling

The module provides specific exception classes:

from provesid.pubchemview import PubChemViewError, PubChemViewNotFoundError

try:
    properties = view.get_experimental_properties(999999, 'Melting Point')
except PubChemViewNotFoundError:
    print("Compound or property not found")
except PubChemViewError as e:
    print(f"API error: {e}")

Batch Processing

Process multiple compounds efficiently:

def batch_extract_properties(cids, property_type):
    """Extract properties for multiple compounds"""
    results = {}
    view = PubChemView()

    for cid in cids:
        try:
            df = view.experimental_properties_to_dataframe(cid, property_type)
            if not df.empty:
                results[cid] = {
                    'count': len(df),
                    'mean_value': df['Value'].mean() if df['Value'].notna().any() else None,
                    'units': df['Unit'].unique().tolist()
                }
        except Exception as e:
            results[cid] = {'error': str(e)}

    return results

# Process multiple compounds
cids = [2244, 2519, 3672]  # Aspirin, Caffeine, Ibuprofen
melting_data = batch_extract_properties(cids, 'Melting Point')

Integration with Other APIs

Combine with PubChem compound data:

from provesid import PubChemAPI, PubChemView

def comprehensive_compound_analysis(cid):
    """Get both computed and experimental data"""
    api = PubChemAPI()
    view = PubChemView()

    # Get computed properties
    computed = api.get_compound_properties(
        [cid], 
        ['MolecularWeight', 'MolecularFormula', 'ConnectivitySMILES']
    )

    # Get experimental properties
    experimental = {}
    for prop_type in ['Melting Point', 'Boiling Point', 'Density']:
        try:
            df = view.experimental_properties_to_dataframe(cid, prop_type)
            if not df.empty:
                experimental[prop_type] = df
        except:
            pass

    return {
        'computed': computed,
        'experimental': experimental
    }

# Analyze aspirin
analysis = comprehensive_compound_analysis(2244)

Performance Considerations

Rate Limiting

The PubChemView client includes automatic rate limiting:

# Adjust request frequency for large batch jobs
view = PubChemView(pause_time=1.0)  # 1 second between requests

# For development/testing with faster requests
view_fast = PubChemView(pause_time=0.1)  # 100ms between requests

Caching

Consider implementing caching for frequently accessed data:

import pickle
from pathlib import Path

def cached_property_extraction(cid, property_type, cache_dir='cache'):
    """Extract properties with file-based caching"""
    cache_path = Path(cache_dir) / f"{cid}_{property_type}.pkl"

    if cache_path.exists():
        with open(cache_path, 'rb') as f:
            return pickle.load(f)

    # Extract fresh data
    view = PubChemView()
    df = view.experimental_properties_to_dataframe(cid, property_type)

    # Cache the results
    cache_path.parent.mkdir(exist_ok=True)
    with open(cache_path, 'wb') as f:
        pickle.dump(df, f)

    return df

See Also