Skip to content

PubChem API

The PubChem API module provides access to PubChem's REST services for retrieving compound and substance data. This module has been recently enhanced with improved data access patterns and new search methods.

provesid.pubchem

Classes

CompoundProperties

Available compound properties for property tables

Source code in src/provesid/pubchem.py
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
class CompoundProperties:
    """Available compound properties for property tables"""
    MOLECULAR_FORMULA = "MolecularFormula"
    MOLECULAR_WEIGHT = "MolecularWeight"
    SMILES = "SMILES"
    CONNECTIVITY_SMILES = "ConnectivitySMILES"
    INCHI = "InChI"
    INCHIKEY = "InChIKey"
    IUPAC_NAME = "IUPACName"
    TITLE = "Title"
    XLOGP = "XLogP"
    EXACT_MASS = "ExactMass"
    MONOISOTOPIC_MASS = "MonoisotopicMass"
    TPSA = "TPSA"
    COMPLEXITY = "Complexity"
    CHARGE = "Charge"
    HBOND_DONOR_COUNT = "HBondDonorCount"
    HBOND_ACCEPTOR_COUNT = "HBondAcceptorCount"
    ROTATABLE_BOND_COUNT = "RotatableBondCount"
    HEAVY_ATOM_COUNT = "HeavyAtomCount"
    ISOTOPE_ATOM_COUNT = "IsotopeAtomCount"
    ATOM_STEREO_COUNT = "AtomStereoCount"
    DEFINED_ATOM_STEREO_COUNT = "DefinedAtomStereoCount"
    UNDEFINED_ATOM_STEREO_COUNT = "UndefinedAtomStereoCount"
    BOND_STEREO_COUNT = "BondStereoCount"
    DEFINED_BOND_STEREO_COUNT = "DefinedBondStereoCount"
    UNDEFINED_BOND_STEREO_COUNT = "UndefinedBondStereoCount"
    COVALENT_UNIT_COUNT = "CovalentUnitCount"
    PATENT_COUNT = "PatentCount"
    PATENT_FAMILY_COUNT = "PatentFamilyCount"
    ANNOTATION_TYPES = "AnnotationTypes"
    ANNOTATION_TYPE_COUNT = "AnnotationTypeCount"
    SOURCE_CATEGORIES = "SourceCategories"
    LITERATURE_COUNT = "LiteratureCount"
    VOLUME_3D = "Volume3D"
    X_STERIC_QUADRUPOLE_3D = "XStericQuadrupole3D"
    Y_STERIC_QUADRUPOLE_3D = "YStericQuadrupole3D"
    Z_STERIC_QUADRUPOLE_3D = "ZStericQuadrupole3D"
    FEATURE_COUNT_3D = "FeatureCount3D"
    FEATURE_ACCEPTOR_COUNT_3D = "FeatureAcceptorCount3D"
    FEATURE_DONOR_COUNT_3D = "FeatureDonorCount3D"
    FEATURE_ANION_COUNT_3D = "FeatureAnionCount3D"
    FEATURE_CATION_COUNT_3D = "FeatureCationCount3D"
    FEATURE_RING_COUNT_3D = "FeatureRingCount3D"
    FEATURE_HYDROPHOBE_COUNT_3D = "FeatureHydrophobeCount3D"
    CONFORMER_MODEL_RMSD_3D = "ConformerModelRMSD3D"
    EFFECTIVE_ROTOR_COUNT_3D = "EffectiveRotorCount3D"
    CONFORMER_COUNT_3D = "ConformerCount3D"
    FINGERPRINT_2D = "Fingerprint2D"

PubChemError

Bases: Exception

Custom exception for PubChem API errors

Source code in src/provesid/pubchem.py
164
165
166
class PubChemError(Exception):
    """Custom exception for PubChem API errors"""
    pass

PubChemTimeoutError

Bases: PubChemError

Exception raised when request times out

Source code in src/provesid/pubchem.py
168
169
170
class PubChemTimeoutError(PubChemError):
    """Exception raised when request times out"""
    pass

PubChemNotFoundError

Bases: PubChemError

Exception raised when resource is not found

Source code in src/provesid/pubchem.py
172
173
174
class PubChemNotFoundError(PubChemError):
    """Exception raised when resource is not found"""
    pass

PubChemServerError

Bases: PubChemError

Exception raised when server error occurs

Source code in src/provesid/pubchem.py
176
177
178
class PubChemServerError(PubChemError):
    """Exception raised when server error occurs"""
    pass

PubChemAPI

A Python interface to the PubChem REST API (PUG-REST)

This class provides methods to interact with PubChem's REST API for retrieving chemical compound, substance, and assay information.

Usage examples

api = PubChemAPI()

Get compound by CID

compound = api.get_compound_by_cid(2244)

Get compound properties

props = api.get_compound_properties([2244, 5793], ['MolecularFormula', 'MolecularWeight'])

Search by name

compounds = api.get_compounds_by_name('aspirin')

similar = api.similarity_search('CCO', threshold=90)

Source code in src/provesid/pubchem.py
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
class PubChemAPI:
    """
    A Python interface to the PubChem REST API (PUG-REST)

    This class provides methods to interact with PubChem's REST API for retrieving
    chemical compound, substance, and assay information.

    Usage examples:
        api = PubChemAPI()

        # Get compound by CID
        compound = api.get_compound_by_cid(2244)

        # Get compound properties
        props = api.get_compound_properties([2244, 5793], ['MolecularFormula', 'MolecularWeight'])

        # Search by name
        compounds = api.get_compounds_by_name('aspirin')

        # Structure search
        similar = api.similarity_search('CCO', threshold=90)
    """

    def __init__(self, base_url: str = pugrest_prolog, pause_time: float = pause_between_calls, use_cache: bool = True):
        """
        Initialize PubChem API client

        Args:
            base_url: Base URL for PubChem REST API
            pause_time: Minimum time between API calls in seconds
            use_cache: Whether to use cache for lookups (default: True). 
                      When False, skips cache lookup but still stores results.

        Note:
            Caching is now unlimited by default with persistent storage.
            Use provesid.cache functions for cache management.
        """
        self.base_url = base_url.rstrip('/')
        self.pause_time = pause_time
        self.last_request_time = 0
        self.use_cache = use_cache

    def clear_cache(self):
        """Clear all cached results for PubChem API"""
        from .cache import clear_pubchem_cache
        clear_pubchem_cache()

    def get_cache_info(self):
        """Get cache statistics for PubChem API cached methods"""
        from .cache import get_pubchem_cache_info
        return get_pubchem_cache_info()

        return cache_info

    def _rate_limit(self):
        """Enforce rate limiting between requests"""
        current_time = time.time()
        time_since_last = current_time - self.last_request_time
        if time_since_last < self.pause_time:
            time.sleep(self.pause_time - time_since_last)
        self.last_request_time = time.time()

    def _make_request(self, url: str, method: str = 'GET', data: Optional[Dict] = None, 
                     timeout: int = 30, headers: Optional[Dict] = None) -> requests.Response:
        """
        Make HTTP request with error handling and rate limiting

        Args:
            url: Request URL
            method: HTTP method (GET or POST)
            data: POST data
            timeout: Request timeout in seconds
            headers: HTTP headers

        Returns:
            Response object

        Raises:
            PubChemTimeoutError: If request times out
            PubChemNotFoundError: If resource not found (404)
            PubChemServerError: If server error occurs (5xx)
            PubChemError: For other HTTP errors
        """
        self._rate_limit()

        try:
            if method.upper() == 'GET':
                response = requests.get(url, timeout=timeout, headers=headers)
            elif method.upper() == 'POST':
                response = requests.post(url, data=data, timeout=timeout, headers=headers)
            else:
                raise ValueError(f"Unsupported HTTP method: {method}")

            # Handle different HTTP status codes
            if response.status_code == 200:
                return response
            elif response.status_code == 202:
                # Accepted - asynchronous operation pending
                logging.warning("Asynchronous operation pending - may need to poll for results")
                return response
            elif response.status_code == 400:
                raise PubChemError(f"Bad request: {response.text}")
            elif response.status_code == 404:
                raise PubChemNotFoundError("Resource not found")
            elif response.status_code == 405:
                raise PubChemError("Method not allowed")
            elif response.status_code == 500:
                raise PubChemServerError("Internal server error")
            elif response.status_code == 501:
                raise PubChemError("Not implemented")
            elif response.status_code == 503:
                raise PubChemServerError("Server busy - try again later")
            elif response.status_code == 504:
                raise PubChemTimeoutError("Request timed out")
            else:
                raise PubChemError(f"HTTP error {response.status_code}: {response.text}")

        except requests.Timeout:
            raise PubChemTimeoutError("Request timed out")
        except requests.RequestException as e:
            raise PubChemError(f"Request failed: {str(e)}")

    def _build_url(self, domain: str, namespace: str, identifiers: Union[str, int, List[Union[str, int]]], 
                   operation: Optional[str] = None, output_format: str = OutputFormat.JSON,
                   **options) -> str:
        """
        Build PubChem REST API URL

        Args:
            domain: API domain (compound, substance, assay, etc.)
            namespace: Namespace within domain (cid, name, smiles, etc.)
            identifiers: Single identifier or list of identifiers
            operation: Operation to perform
            output_format: Desired output format
            **options: Additional URL parameters

        Returns:
            Complete URL string
        """
        # Handle identifiers
        if isinstance(identifiers, list):
            identifiers_str = ','.join(map(str, identifiers))
        else:
            identifiers_str = str(identifiers)

        # URL-encode identifiers for special characters
        identifiers_str = quote(identifiers_str, safe=',')

        # Build base URL path
        url_parts = [self.base_url, domain, namespace, identifiers_str]

        if operation:
            url_parts.append(operation)

        if output_format:
            url_parts.append(output_format)

        url = '/'.join(url_parts)

        # Add query parameters
        if options:
            params = []
            for key, value in options.items():
                if isinstance(value, bool):
                    value = str(value).lower()
                params.append(f"{key}={quote(str(value))}")
            if params:
                url += '?' + '&'.join(params)

        return url

    def _parse_response(self, response: requests.Response, output_format: str = OutputFormat.JSON) -> Any:
        """
        Parse API response based on format

        Args:
            response: HTTP response object
            output_format: Expected output format

        Returns:
            Parsed response data
        """
        if output_format == OutputFormat.JSON:
            try:
                return response.json()
            except json.JSONDecodeError:
                return response.text
        elif output_format in [OutputFormat.XML, OutputFormat.SDF, OutputFormat.CSV, 
                              OutputFormat.TXT, OutputFormat.ASNT, OutputFormat.ASNB]:
            return response.text
        elif output_format == OutputFormat.PNG:
            return response.content
        else:
            return response.text

    # Public cached methods
    @cached(service='pubchem')
    def get_compound_by_cid(self, cid: Union[int, str], output_format: str = OutputFormat.JSON) -> Any:
        """
        Get compound record by CID

        Args:
            cid: Compound ID
            output_format: Desired output format

        Returns:
            Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cid, 
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                return result["PC_Compounds"][0]

        return result

    def _get_compounds_by_name_impl(self, name: str, output_format: str = OutputFormat.JSON,
                                   name_type: str = "word") -> Any:
        """Implementation method for get_compounds_by_name with caching"""
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.NAME, name,
                             Operation.RECORD, output_format, name_type=name_type)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                # If there's only one compound, return it directly, otherwise return the list
                if len(result["PC_Compounds"]) == 1:
                    return result["PC_Compounds"][0]
                else:
                    return result["PC_Compounds"]

        return result

    @cached(service='pubchem')
    def get_compounds_by_name(self, name: str, output_format: str = OutputFormat.JSON,
                             name_type: str = "word") -> Any:
        """
        Get compounds by name

        Args:
            name: Compound name
            output_format: Desired output format
            name_type: Name search type ("word" or "complete")

        Returns:
            Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.NAME, name,
                             Operation.RECORD, output_format, name_type=name_type)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                # If there's only one compound, return it directly, otherwise return the list
                if len(result["PC_Compounds"]) == 1:
                    return result["PC_Compounds"][0]
                else:
                    return result["PC_Compounds"]

        return result

    def _get_compounds_by_smiles_impl(self, smiles: str, output_format: str = OutputFormat.JSON) -> Any:
        """Implementation method for get_compounds_by_smiles with caching"""
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.SMILES, smiles,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                # If there's only one compound, return it directly, otherwise return the list
                if len(result["PC_Compounds"]) == 1:
                    return result["PC_Compounds"][0]
                else:
                    return result["PC_Compounds"]

        return result

    @cached(service='pubchem')
    def get_compounds_by_smiles(self, smiles: str, output_format: str = OutputFormat.JSON) -> Any:
        """
        Get compounds by SMILES

        Args:
            smiles: SMILES string
            output_format: Desired output format

        Returns:
            Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.SMILES, smiles,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                # If there's only one compound, return it directly, otherwise return the list
                if len(result["PC_Compounds"]) == 1:
                    return result["PC_Compounds"][0]
                else:
                    return result["PC_Compounds"]

        return result

    def _get_compounds_by_inchikey_impl(self, inchikey: str, output_format: str = OutputFormat.JSON) -> Any:
        """Implementation method for get_compounds_by_inchikey with caching"""
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.INCHIKEY, inchikey,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                # If there's only one compound, return it directly, otherwise return the list
                if len(result["PC_Compounds"]) == 1:
                    return result["PC_Compounds"][0]
                else:
                    return result["PC_Compounds"]

        return result

    @cached(service='pubchem')
    def get_compounds_by_inchikey(self, inchikey: str, output_format: str = OutputFormat.JSON) -> Any:
        """
        Get compounds by InChIKey

        Args:
            inchikey: InChI Key
            output_format: Desired output format

        Returns:
            Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.INCHIKEY, inchikey,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the compound data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
                # If there's only one compound, return it directly, otherwise return the list
                if len(result["PC_Compounds"]) == 1:
                    return result["PC_Compounds"][0]
                else:
                    return result["PC_Compounds"]

        return result

    @cached(service='pubchem')
    def _cached_get_compound_properties(self, cid: Union[int, str], 
                                       properties_tuple: tuple, 
                                       include_synonyms: bool = True,
                                       output_format: str = OutputFormat.JSON) -> Dict[str, Any]:
        """Cached implementation of get_compound_properties"""
        properties = list(properties_tuple)
        try:
            props_str = ','.join(properties)
            operation = f"{Operation.PROPERTY}/{props_str}"
            url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cid,
                                 operation, output_format)
            response = self._make_request(url)
            prop_data = self._parse_response(response, output_format)

            # Get synonyms if requested
            synonyms_data = None
            if include_synonyms:
                try:
                    synonyms_data = self.get_compound_synonyms(cid, output_format)
                except Exception as e:
                    # Don't fail the whole request if synonyms fail
                    synonyms_data = []

            # Extract properties from nested structure
            if prop_data and 'PropertyTable' in prop_data and 'Properties' in prop_data['PropertyTable']:
                properties_dict = prop_data['PropertyTable']['Properties'][0]

                # Add metadata keys
                properties_dict['success'] = True
                properties_dict['cid'] = cid
                properties_dict['error'] = None
                if include_synonyms:
                    properties_dict['synonyms'] = synonyms_data

                return properties_dict
            else:
                # Fallback for unexpected structure
                result = {
                    "success": False,
                    "cid": cid,
                    "error": "Unexpected response structure",
                    "raw_response": prop_data
                }
                if include_synonyms:
                    result['synonyms'] = synonyms_data
                return result

        except Exception as e:
            result = {
                "success": False,
                "cid": cid,
                "error": str(e)
            }
            if include_synonyms:
                result['synonyms'] = None
            return result

    @cached(service='pubchem')
    def get_compound_properties(self, cid: Union[int, str], 
                               properties: List[str], 
                               include_synonyms: bool = True,
                               output_format: str = OutputFormat.JSON) -> Dict[str, Any]:
        """
        Get compound properties and synonyms by CID with direct property access

        Args:
            cid: Single Compound ID
            properties: List of property names
            include_synonyms: Whether to include synonyms in the output
            output_format: Desired output format

        Returns:
            Dictionary with properties directly accessible at top level,
            plus 'success', 'cid', 'synonyms', and 'error' metadata keys
        """
        # Convert list to tuple for caching
        properties_tuple = tuple(properties)
        return self._cached_get_compound_properties(cid, properties_tuple, include_synonyms, output_format)

    def get_compound_properties_batch(self, cids: List[Union[int, str]], 
                                     properties: List[str], 
                                     output_format: str = OutputFormat.JSON) -> List[Dict[str, Any]]:
        """
        Get compound properties for multiple CIDs (legacy batch method)

        Args:
            cids: List of CIDs
            properties: List of property names
            output_format: Desired output format

        Returns:
            List of dictionaries, each with flat structure like get_compound_properties
        """
        results = []
        for cid in cids:
            try:
                result = self.get_compound_properties(cid, properties, include_synonyms=False, output_format=output_format)
                results.append(result)
            except Exception as e:
                results.append({
                    "success": False,
                    "cid": cid,
                    "error": str(e)
                })
        return results

    @cached(service='pubchem')
    def get_compound_synonyms(self, cid: Union[int, str], output_format: str = OutputFormat.JSON) -> List[str]:
        """
        Get compound synonyms by CID

        Args:
            cid: Compound ID
            output_format: Desired output format

        Returns:
            List of synonyms (flattened from nested structure)
        """
        try:
            url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cid,
                                 Operation.SYNONYMS, output_format)
            response = self._make_request(url)
            raw_data = self._parse_response(response, output_format)

            # Extract synonyms from nested structure
            if raw_data and 'InformationList' in raw_data:
                info_list = raw_data['InformationList'].get('Information', [])
                if info_list and len(info_list) > 0:
                    return info_list[0].get('Synonym', [])

            # Return empty list if no synonyms found
            return []

        except Exception:
            # Return empty list on error to maintain consistent return type
            return []

    @cached(service='pubchem')
    def get_cids_by_name(self, name: str, output_format: str = OutputFormat.JSON,
                        name_type: str = "word", domain: str = Domain.COMPOUND) -> Any:
        """
        Get CIDs by name from compound or substance domain

        Args:
            name: Compound or substance name
            output_format: Desired output format
            name_type: Name search type ("word" or "complete")
            domain: Search domain (Domain.COMPOUND or Domain.SUBSTANCE)

        Returns:
            CID list (extracted from nested response structure)

        Note:
            When searching in the substance domain, this can find CIDs for substances
            that may not be directly searchable in the compound domain.
        """
        # Choose appropriate namespace based on domain
        if domain == Domain.COMPOUND:
            namespace = CompoundDomainNamespace.NAME
        elif domain == Domain.SUBSTANCE:
            namespace = SubstanceDomainNamespace.NAME
        else:
            raise ValueError(f"Unsupported domain: {domain}. Use Domain.COMPOUND or Domain.SUBSTANCE")

        url = self._build_url(domain, namespace, name,
                             Operation.CIDS, output_format, name_type=name_type)
        response = self._make_request(url)
        parsed_response = self._parse_response(response, output_format)

        # Extract CID list from nested structure if JSON format
        if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
            # Handle compound domain response structure
            if 'IdentifierList' in parsed_response and 'CID' in parsed_response['IdentifierList']:
                return parsed_response['IdentifierList']['CID']
            # Handle substance domain response structure
            elif 'InformationList' in parsed_response and 'Information' in parsed_response['InformationList']:
                cids = []
                for info in parsed_response['InformationList']['Information']:
                    if 'CID' in info:
                        cids.extend(info['CID'])
                return list(set(cids))  # Remove duplicates and return unique CIDs
            elif 'Fault' in parsed_response:
                # Handle API fault response
                raise PubChemNotFoundError(f"No CIDs found for name: {name}")

        # Return original response for non-JSON formats or if structure is different
        return parsed_response

    @cached(service='pubchem')
    def get_cids_by_smiles(self, smiles: str, output_format: str = OutputFormat.JSON) -> Any:
        """
        Get CIDs by SMILES

        Args:
            smiles: SMILES string
            output_format: Desired output format

        Returns:
            CID list (extracted from nested response structure)
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.SMILES, smiles,
                             Operation.CIDS, output_format)
        response = self._make_request(url)
        parsed_response = self._parse_response(response, output_format)

        # Extract CID list from nested structure if JSON format
        if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
            if 'IdentifierList' in parsed_response and 'CID' in parsed_response['IdentifierList']:
                return parsed_response['IdentifierList']['CID']
            elif 'Fault' in parsed_response:
                # Handle API fault response
                raise PubChemNotFoundError(f"No CIDs found for SMILES: {smiles}")

        # Return original response for non-JSON formats or if structure is different
        return parsed_response

    @cached(service='pubchem')
    def get_cids_by_inchikey(self, inchikey: str, output_format: str = OutputFormat.JSON) -> Any:
        """
        Get CIDs by InChI Key

        Args:
            inchikey: InChI Key string
            output_format: Desired output format

        Returns:
            CID list (extracted from nested response structure)
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.INCHIKEY, inchikey,
                             Operation.CIDS, output_format)
        response = self._make_request(url)
        parsed_response = self._parse_response(response, output_format)

        # Extract CID list from nested structure if JSON format
        if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
            if 'IdentifierList' in parsed_response and 'CID' in parsed_response['IdentifierList']:
                return parsed_response['IdentifierList']['CID']
            elif 'Fault' in parsed_response:
                # Handle API fault response
                raise PubChemNotFoundError(f"No CIDs found for InChI Key: {inchikey}")

        # Return original response for non-JSON formats or if structure is different
        return parsed_response

    @cached(service='pubchem')
    def get_cids_by_formula(self, formula: str, output_format: str = OutputFormat.JSON,
                           allow_other_elements: bool = False) -> Any:
        """
        Get CIDs by molecular formula using fast search

        Args:
            formula: Molecular formula
            output_format: Desired output format
            allow_other_elements: Allow other elements beyond those specified

        Returns:
            CID list
        """
        url = self._build_url(Domain.COMPOUND, FastSearch.FASTFORMULA, formula,
                             Operation.CIDS, output_format, 
                             AllowOtherElements=allow_other_elements)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    # Structure search methods
    def _make_options_hashable(self, **options: Any) -> tuple:
        """Convert options dict to a hashable tuple for caching"""
        if not options:
            return ()
        # Sort items to ensure consistent hashing
        sorted_items = tuple(sorted(options.items()))
        return sorted_items

    @cached(service='pubchem')
    def _cached_substructure_search(self, query: str, query_type: str, output_format: str, options_tuple: tuple) -> Any:
        """Cached implementation of substructure search"""
        options = dict(options_tuple) if options_tuple else {}
        search_type = f"{FastSearch.FASTSUBSTRUCTURE}/{query_type}"
        url = self._build_url(Domain.COMPOUND, search_type, query,
                             Operation.CIDS, output_format, **options)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    def substructure_search(self, query: str, query_type: str = "smiles", 
                           output_format: str = OutputFormat.JSON, **options: Any) -> Any:
        """
        Perform substructure search

        Args:
            query: Query structure (SMILES, CID, etc.)
            query_type: Type of query (smiles, cid, etc.)
            output_format: Desired output format
            **options: Search options (MatchIsotopes, MaxRecords, etc.)

        Returns:
            Search results
        """
        options_tuple = self._make_options_hashable(**options)
        return self._cached_substructure_search(query, query_type, output_format, options_tuple)

    @cached(service='pubchem')
    def _cached_superstructure_search(self, query: str, query_type: str, output_format: str, options_tuple: tuple) -> Any:
        """Cached implementation of superstructure search"""
        options = dict(options_tuple) if options_tuple else {}
        search_type = f"{FastSearch.FASTSUPERSTRUCTURE}/{query_type}"
        url = self._build_url(Domain.COMPOUND, search_type, query,
                             Operation.CIDS, output_format, **options)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    def superstructure_search(self, query: str, query_type: str = "smiles",
                             output_format: str = OutputFormat.JSON, **options: Any) -> Any:
        """
        Perform superstructure search

        Args:
            query: Query structure (SMILES, CID, etc.)
            query_type: Type of query (smiles, cid, etc.)
            output_format: Desired output format
            **options: Search options

        Returns:
            Search results
        """
        options_tuple = self._make_options_hashable(**options)
        return self._cached_superstructure_search(query, query_type, output_format, options_tuple)

    @cached(service='pubchem')
    def _cached_similarity_search(self, query: str, query_type: str, threshold: int, output_format: str, options_tuple: tuple) -> Any:
        """Cached implementation of similarity search"""
        options = dict(options_tuple) if options_tuple else {}
        search_type = f"{FastSearch.FASTSIMILARITY_2D}/{query_type}"
        url = self._build_url(Domain.COMPOUND, search_type, query,
                             Operation.CIDS, output_format, 
                             Threshold=threshold, **options)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    @cached(service='pubchem')
    def similarity_search(self, query: str, query_type: str = "smiles",
                         threshold: int = 90, output_format: str = OutputFormat.JSON,
                         **options: Any) -> Any:
        """
        Perform 2D similarity search

        Args:
            query: Query structure (SMILES, CID, etc.)
            query_type: Type of query (smiles, cid, etc.)
            threshold: Similarity threshold (0-100)
            output_format: Desired output format
            **options: Search options

        Returns:
            Search results
        """
        options_tuple = self._make_options_hashable(**options)
        return self._cached_similarity_search(query, query_type, threshold, output_format, options_tuple)

    @cached(service='pubchem')
    def _cached_identity_search(self, query: str, query_type: str, identity_type: str, output_format: str, options_tuple: tuple) -> Any:
        """Cached implementation of identity search"""
        options = dict(options_tuple) if options_tuple else {}
        search_type = f"{FastSearch.FASTIDENTITY}/{query_type}"
        url = self._build_url(Domain.COMPOUND, search_type, query,
                             Operation.CIDS, output_format,
                             identity_type=identity_type, **options)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    @cached(service='pubchem')
    def identity_search(self, query: str, query_type: str = "smiles",
                       identity_type: str = "same_stereo_isotope",
                       output_format: str = OutputFormat.JSON, **options: Any) -> Any:
        """
        Perform identity search

        Args:
            query: Query structure (SMILES, CID, etc.)
            query_type: Type of query (smiles, cid, etc.)
            identity_type: Type of identity match
            output_format: Desired output format
            **options: Search options

        Returns:
            Search results
        """
        options_tuple = self._make_options_hashable(**options)
        return self._cached_identity_search(query, query_type, identity_type, output_format, options_tuple)

    # Substance methods
    @cached(service='pubchem')
    def get_substance_by_sid(self, sid: Union[int, str], output_format: str = OutputFormat.JSON) -> Any:
        """
        Get substance by SID

        Args:
            sid: Substance ID
            output_format: Desired output format

        Returns:
            Substance data (automatically extracts from PC_Substances wrapper for JSON format)
        """
        url = self._build_url(Domain.SUBSTANCE, SubstanceDomainNamespace.SID, sid,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the substance data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Substances" in result and isinstance(result["PC_Substances"], list) and len(result["PC_Substances"]) > 0:
                return result["PC_Substances"][0]

        return result

    @cached(service='pubchem')
    def get_substances_by_name(self, name: str, output_format: str = OutputFormat.JSON) -> Any:
        """
        Get substances by name

        Args:
            name: Substance name
            output_format: Desired output format

        Returns:
            Substance data (automatically extracts from PC_Substances wrapper for JSON format)
        """
        url = self._build_url(Domain.SUBSTANCE, SubstanceDomainNamespace.NAME, name,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        result = self._parse_response(response, output_format)

        # For JSON format, automatically extract the substance data from the wrapper
        if output_format == OutputFormat.JSON and isinstance(result, dict):
            if "PC_Substances" in result and isinstance(result["PC_Substances"], list) and len(result["PC_Substances"]) > 0:
                # If there's only one substance, return it directly, otherwise return the list
                if len(result["PC_Substances"]) == 1:
                    return result["PC_Substances"][0]
                else:
                    return result["PC_Substances"]

        return result

    @cached(service='pubchem')
    def get_sids_by_name(self, name: str, output_format: str = OutputFormat.JSON,
                        sourcename: Optional[str] = None) -> Any:
        """
        Get SIDs by name

        Args:
            name: Substance name
            output_format: Desired output format
            sourcename: Restrict to specific source

        Returns:
            SID list (extracted from nested response structure)
        """
        options = {}
        if sourcename:
            options['sourcename'] = sourcename

        url = self._build_url(Domain.SUBSTANCE, SubstanceDomainNamespace.NAME, name,
                             Operation.SIDS, output_format, **options)
        response = self._make_request(url)
        parsed_response = self._parse_response(response, output_format)

        # Extract SID list from nested structure if JSON format
        if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
            if 'IdentifierList' in parsed_response and 'SID' in parsed_response['IdentifierList']:
                return parsed_response['IdentifierList']['SID']
            elif 'Fault' in parsed_response:
                # Handle API fault response
                raise PubChemNotFoundError(f"No SIDs found for name: {name}")

        # Return original response for non-JSON formats or if structure is different
        return parsed_response

    # Assay methods
    @cached(service='pubchem')
    def get_assay_by_aid(self, aid: Union[int, str], output_format: str = OutputFormat.JSON) -> Any:
        """
        Get assay by AID

        Args:
            aid: Assay ID
            output_format: Desired output format

        Returns:
            Assay data
        """
        url = self._build_url(Domain.ASSAY, AssayDomainNamespace.AID, aid,
                             Operation.RECORD, output_format)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    @cached(service='pubchem')
    def get_assay_summary(self, cids: Union[int, str, List[Union[int, str]]],
                         output_format: str = OutputFormat.JSON) -> Any:
        """
        Get assay summary for compounds

        Args:
            cids: Single CID or list of CIDs
            output_format: Desired output format

        Returns:
            Assay summary data
        """
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cids,
                             Operation.ASSAYSUMMARY, output_format)
        response = self._make_request(url)
        return self._parse_response(response, output_format)

    # Convenience methods for common use cases
    @cached(service='pubchem')
    def search_compound(self, query: str, search_type: str = "name") -> Dict[str, Any]:
        """
        Search for compound with automatic format detection

        Args:
            query: Search query (name, SMILES, InChIKey, etc.)
            search_type: Type of search ("name", "smiles", "inchikey", "cid")

        Returns:
            Dictionary with search results and metadata
        """
        try:
            if search_type == "name":
                result = self.get_compounds_by_name(query)
            elif search_type == "smiles":
                result = self.get_compounds_by_smiles(query)
            elif search_type == "inchikey":
                result = self.get_compounds_by_inchikey(query)
            elif search_type == "cid":
                result = self.get_compound_by_cid(query)
            else:
                raise ValueError(f"Unsupported search type: {search_type}")

            return {
                "success": True,
                "query": query,
                "search_type": search_type,
                "data": result,
                "error": None
            }

        except Exception as e:
            return {
                "success": False,
                "query": query,
                "search_type": search_type,
                "data": None,
                "error": str(e)
            }

    def format_search_compound_result(self, search_result: Dict[str, Any], 
                                      index: Optional[int] = None) -> Union[Dict[str, Any], List[Dict[str, Any]]]:
        """
        Convert search_compound output to a nicely formatted dictionary with flat structure

        Extracts properties from the nested props structure in search_compound results
        and creates a dictionary similar to get_all_compound_info output.

        Args:
            search_result: The result dictionary from search_compound()
            index: If search returns multiple results, specify which one to format (0-based).
                   If None and multiple results exist, returns a list of all formatted results.

        Returns:
            Dictionary with formatted properties, or list of dictionaries if multiple results.
            If search was unsuccessful or data is missing, returns a dictionary with 
            success=False and error message.

        Examples:
            >>> pch = PubChemAPI()
            >>> # Single result (e.g., CAS number)
            >>> res = pch.search_compound("50-00-0")
            >>> formatted = pch.format_search_compound_result(res)
            >>> print(formatted.get("MolecularFormula"))
            'CH2O'

            >>> # Multiple results (e.g., common name)
            >>> res = pch.search_compound("aspirin")
            >>> formatted = pch.format_search_compound_result(res, index=0)  # Get first result
            >>> # Or get all results
            >>> all_formatted = pch.format_search_compound_result(res)  # Returns list
        """
        # Check if search was successful
        if not search_result.get("success"):
            return {
                "success": False,
                "error": search_result.get("error", "Search was not successful"),
                "query": search_result.get("query"),
                "search_type": search_result.get("search_type")
            }

        # Check if data exists
        data = search_result.get("data")
        if not data:
            return {
                "success": False,
                "error": "No data found in search result",
                "query": search_result.get("query"),
                "search_type": search_result.get("search_type")
            }

        # Handle multiple results (list of compounds)
        if isinstance(data, list):
            if index is not None:
                # Format specific index
                if 0 <= index < len(data):
                    return self._format_single_compound(data[index], search_result)
                else:
                    return {
                        "success": False,
                        "error": f"Index {index} out of range (0-{len(data)-1})",
                        "query": search_result.get("query"),
                        "search_type": search_result.get("search_type")
                    }
            else:
                # Format all results
                return [self._format_single_compound(compound, search_result) 
                        for compound in data]

        # Handle single result (dict)
        if "props" not in data:
            return {
                "success": False,
                "error": "No properties data found in search result",
                "query": search_result.get("query"),
                "search_type": search_result.get("search_type")
            }

        return self._format_single_compound(data, search_result)

    def _format_single_compound(self, data: Dict[str, Any], 
                                search_result: Dict[str, Any]) -> Dict[str, Any]:
        """
        Internal helper to format a single compound's data

        Args:
            data: Single compound data dictionary with 'props' key
            search_result: Original search result for metadata

        Returns:
            Formatted dictionary with flat structure
        """
        # Initialize result dictionary with metadata
        formatted = {
            "success": True,
            "query": search_result.get("query"),
            "search_type": search_result.get("search_type"),
            "error": None
        }

        # Add CID if available
        if "id" in data and "id" in data["id"] and "cid" in data["id"]["id"]:
            formatted["CID"] = data["id"]["id"]["cid"]

        # Map of property labels/names to standardized keys
        # This maps the PubChem record format to property table format
        property_mapping = {
            ("Molecular Formula", ""): "MolecularFormula",
            ("Molecular Weight", ""): "MolecularWeight",
            ("SMILES", "Absolute"): "SMILES",
            ("SMILES", "Connectivity"): "ConnectivitySMILES",
            ("InChI", "Standard"): "InChI",
            ("InChIKey", "Standard"): "InChIKey",
            ("IUPAC Name", "Preferred"): "IUPACName",
            ("Log P", "XLogP3-AA"): "XLogP",
            ("Mass", "Exact"): "ExactMass",
            ("Weight", "MonoIsotopic"): "MonoisotopicMass",
            ("Topological", "Polar Surface Area"): "TPSA",
            ("Compound Complexity", ""): "Complexity",
            ("Count", "Hydrogen Bond Donor"): "HBondDonorCount",
            ("Count", "Hydrogen Bond Acceptor"): "HBondAcceptorCount",
            ("Count", "Rotatable Bond"): "RotatableBondCount",
            ("Fingerprint", "SubStructure Keys"): "Fingerprint2D",
            ("IUPAC Name", "Allowed"): "IUPACName_Allowed",
            ("IUPAC Name", "CAS-like Style"): "IUPACName_CASStyle",
            ("IUPAC Name", "Markup"): "IUPACName_Markup",
            ("IUPAC Name", "Systematic"): "IUPACName_Systematic",
            ("IUPAC Name", "Traditional"): "IUPACName_Traditional",
        }

        # Process each property
        for prop in data["props"]:
            urn = prop.get("urn", {})
            label = urn.get("label", "")
            name = urn.get("name", "")

            # Get value based on type
            value_obj = prop.get("value", {})
            if "sval" in value_obj:
                value = value_obj["sval"]
            elif "ival" in value_obj:
                value = value_obj["ival"]
            elif "fval" in value_obj:
                value = value_obj["fval"]
            elif "binary" in value_obj:
                value = value_obj["binary"]
            else:
                continue  # Skip if no recognized value type

            # Check if we have a mapping for this property
            key_tuple = (label, name)
            if key_tuple in property_mapping:
                formatted[property_mapping[key_tuple]] = value
            else:
                # For unmapped properties, create a key from label and name
                if name:
                    key = f"{label}_{name}".replace(" ", "").replace("-", "")
                else:
                    key = label.replace(" ", "").replace("-", "")
                formatted[key] = value

        return formatted

    @cached(service='pubchem')
    def get_basic_compound_info(self, cid: Union[int, str], 
                                include_synonyms: bool = False) -> Dict[str, Any]:
        """
        Get basic compound information including formula, molecular weight, 
        and structure, and IUPAC name. Synonyms can be included optionally.

        Args:
            cid: Compound ID
            include_synonyms: Whether to include synonyms in the response

        Returns:
            Dictionary with compound properties directly accessible at top level,
            plus 'success', 'cid', 'synonyms', and 'error' metadata keys
        """
        # Get basic properties with synonyms
        properties = [
            CompoundProperties.MOLECULAR_FORMULA,
            CompoundProperties.MOLECULAR_WEIGHT,
            CompoundProperties.SMILES,
            CompoundProperties.INCHI,
            CompoundProperties.INCHIKEY,
            CompoundProperties.IUPAC_NAME
        ]

        # Use the new get_compound_properties method which already includes synonyms and metadata
        return self.get_compound_properties(cid, properties, include_synonyms=include_synonyms)

    @cached(service='pubchem')
    def get_all_compound_info(self, cid: Union[int, str]) -> Dict[str, Any]:
        """
        Get all compound properties as listed in CompoundProperties

        Args:
            cid: Compound ID

        Returns:
            Dictionary with compound properties directly accessible at top level,
            plus 'success', 'cid', and 'error' metadata keys
        """
        # Get all property values from CompoundProperties class
        properties = []
        for attr_name in dir(CompoundProperties):
            if not attr_name.startswith("_"):
                prop_value = getattr(CompoundProperties, attr_name)
                if isinstance(prop_value, str):
                    properties.append(prop_value)

        # Use the new get_compound_properties method which already returns flat data
        return self.get_compound_properties(cid, properties, include_synonyms=False)

    def extract_identifiers_from_synonyms(self, synonyms: List[str]) -> Dict[str, List[str]]:
        """
        Extract chemical identifiers from a list of synonyms

        Args:
            synonyms: List of synonym strings

        Returns:
            Dictionary with lists of unique identifiers for each type:
            - casrn: CAS Registry Numbers (format: 2-5 digit-2 digit-single digit)
            - nsc: NSC numbers (begins with NSC)
            - dtxsid: DTXSID identifiers (begins with DTXSID)
            - dtxcid: DTXCID identifiers (begins with DTXCID)
            - ec_number: EC numbers (format: NNN-NNN-N)
            - chebi_id: ChEBI IDs (begins with CHEBI)
            - chembl: ChEMBL numbers (begins with CHEMBL)
        """
        identifiers = {
            'casrn': [],
            'nsc': [],
            'dtxsid': [],
            'dtxcid': [],
            'ec_number': [],
            'chebi_id': [],
            'chembl': []
        }

        for synonym in synonyms:
            if not isinstance(synonym, str):
                continue

            synonym_upper = synonym.upper().strip()

            # CAS Registry Number: 2-5 digits, hyphen, 2 digits, hyphen, 1 digit
            # May or may not begin with "CAS"
            cas_patterns = [
                r'\b(?:CAS\s*[:\-]?\s*)?(\d{2,7}-\d{2}-\d)\b',  # With optional CAS prefix and separators
            ]
            for pattern in cas_patterns:
                matches = re.findall(pattern, synonym_upper)
                for match in matches:
                    # Validate CAS number format more strictly
                    if re.match(r'^\d{2,7}-\d{2}-\d$', match):
                        if match not in identifiers['casrn']:
                            identifiers['casrn'].append(match)

            # NSC Number: begins with NSC
            nsc_match = re.search(r'\b(NSC\s*\d+)\b', synonym_upper)
            if nsc_match:
                nsc = nsc_match.group(1).replace(' ', '')
                if nsc not in identifiers['nsc']:
                    identifiers['nsc'].append(nsc)

            # DTXSID: begins with DTXSID
            dtxsid_match = re.search(r'\b(DTXSID\d+)\b', synonym_upper)
            if dtxsid_match:
                dtxsid = dtxsid_match.group(1)
                if dtxsid not in identifiers['dtxsid']:
                    identifiers['dtxsid'].append(dtxsid)

            # DTXCID: begins with DTXCID
            dtxcid_match = re.search(r'\b(DTXCID\d+)\b', synonym_upper)
            if dtxcid_match:
                dtxcid = dtxcid_match.group(1)
                if dtxcid not in identifiers['dtxcid']:
                    identifiers['dtxcid'].append(dtxcid)

            # EC Number: standard format is N.N.N.N (enzyme classification)
            # Only accept the standard dot-separated format
            ec_pattern = r'\b(?:EC\s*[:\-]?\s*)?(\d{1,2}\.\d{1,3}\.\d{1,3}\.(?:\d{1,3}|\-))\b'
            matches = re.findall(ec_pattern, synonym_upper)
            for match in matches:
                if match not in identifiers['ec_number']:
                    identifiers['ec_number'].append(match)

            # ChEBI ID: begins with CHEBI
            chebi_match = re.search(r'\b(CHEBI:?\s*\d+)\b', synonym_upper)
            if chebi_match:
                chebi = chebi_match.group(1).replace(' ', '').replace(':', ':')
                # Standardize format to CHEBI:XXXXX
                if not chebi.startswith('CHEBI:'):
                    chebi = chebi.replace('CHEBI', 'CHEBI:')
                if chebi not in identifiers['chebi_id']:
                    identifiers['chebi_id'].append(chebi)

            # ChEMBL: begins with CHEMBL
            chembl_match = re.search(r'\b(CHEMBL\d+)\b', synonym_upper)
            if chembl_match:
                chembl = chembl_match.group(1)
                if chembl not in identifiers['chembl']:
                    identifiers['chembl'].append(chembl)

        return identifiers

    def get_compound_identifiers(self, cid: Union[int, str]) -> Dict[str, Any]:
        """
        Get compound identifiers extracted from synonyms

        Args:
            cid: Compound ID

        Returns:
            Dictionary with 'success', 'cid', 'error' metadata and extracted identifiers
        """
        try:
            # Get synonyms
            synonyms_list = self.get_compound_synonyms(cid)

            # Extract identifiers
            identifiers = self.extract_identifiers_from_synonyms(synonyms_list)

            # Add metadata
            result = {
                'success': True,
                'cid': cid,
                'error': None,
                'total_synonyms': len(synonyms_list)
            }
            result.update(identifiers)

            return result

        except Exception as e:
            return {
                'success': False,
                'cid': cid,
                'error': str(e),
                'casrn': [],
                'nsc': [],
                'dtxsid': [],
                'dtxcid': [],
                'ec_number': [],
                'chebi_id': [],
                'chembl': [],
                'total_synonyms': 0
            }

    def find_cids_comprehensive(self, name: str, name_type: str = "word") -> Dict[str, Any]:
        """
        Search for CIDs in both compound and substance domains

        This method first searches in the compound domain, and if no results are found,
        it searches in the substance domain. This is useful for comprehensive searching
        when you're not sure which domain contains the identifier.

        Args:
            name: Compound or substance name (including CAS numbers, trade names, etc.)
            name_type: Name search type ("word" or "complete")

        Returns:
            Dictionary with search results from both domains
        """
        results = {
            "query": name,
            "name_type": name_type,
            "compound_domain": {"cids": [], "success": False, "error": None},
            "substance_domain": {"cids": [], "success": False, "error": None},
            "total_unique_cids": [],
            "recommended_domain": None
        }

        # Try compound domain first
        try:
            compound_cids = self.get_cids_by_name(name, name_type=name_type, domain=Domain.COMPOUND)
            results["compound_domain"]["cids"] = compound_cids
            results["compound_domain"]["success"] = True
            results["total_unique_cids"].extend(compound_cids)
        except Exception as e:
            results["compound_domain"]["error"] = str(e)

        # Try substance domain
        try:
            substance_cids = self.get_cids_by_name(name, name_type=name_type, domain=Domain.SUBSTANCE)
            results["substance_domain"]["cids"] = substance_cids
            results["substance_domain"]["success"] = True
            results["total_unique_cids"].extend(substance_cids)
        except Exception as e:
            results["substance_domain"]["error"] = str(e)

        # Remove duplicates and determine recommended domain
        results["total_unique_cids"] = list(set(results["total_unique_cids"]))

        if results["compound_domain"]["success"] and results["substance_domain"]["success"]:
            # Both succeeded - recommend the one with more results
            compound_count = len(results["compound_domain"]["cids"])
            substance_count = len(results["substance_domain"]["cids"])
            results["recommended_domain"] = "compound" if compound_count >= substance_count else "substance"
        elif results["compound_domain"]["success"]:
            results["recommended_domain"] = "compound"
        elif results["substance_domain"]["success"]:
            results["recommended_domain"] = "substance"
        else:
            results["recommended_domain"] = None

        return results
Functions
__init__(base_url=pugrest_prolog, pause_time=pause_between_calls, use_cache=True)

Initialize PubChem API client

Parameters:

Name Type Description Default
base_url str

Base URL for PubChem REST API

pugrest_prolog
pause_time float

Minimum time between API calls in seconds

pause_between_calls
use_cache bool

Whether to use cache for lookups (default: True). When False, skips cache lookup but still stores results.

True
Note

Caching is now unlimited by default with persistent storage. Use provesid.cache functions for cache management.

Source code in src/provesid/pubchem.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def __init__(self, base_url: str = pugrest_prolog, pause_time: float = pause_between_calls, use_cache: bool = True):
    """
    Initialize PubChem API client

    Args:
        base_url: Base URL for PubChem REST API
        pause_time: Minimum time between API calls in seconds
        use_cache: Whether to use cache for lookups (default: True). 
                  When False, skips cache lookup but still stores results.

    Note:
        Caching is now unlimited by default with persistent storage.
        Use provesid.cache functions for cache management.
    """
    self.base_url = base_url.rstrip('/')
    self.pause_time = pause_time
    self.last_request_time = 0
    self.use_cache = use_cache
clear_cache()

Clear all cached results for PubChem API

Source code in src/provesid/pubchem.py
222
223
224
225
def clear_cache(self):
    """Clear all cached results for PubChem API"""
    from .cache import clear_pubchem_cache
    clear_pubchem_cache()
get_cache_info()

Get cache statistics for PubChem API cached methods

Source code in src/provesid/pubchem.py
227
228
229
230
231
232
def get_cache_info(self):
    """Get cache statistics for PubChem API cached methods"""
    from .cache import get_pubchem_cache_info
    return get_pubchem_cache_info()

    return cache_info
get_compound_by_cid(cid, output_format=OutputFormat.JSON)

Get compound record by CID

Parameters:

Name Type Description Default
cid Union[int, str]

Compound ID

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Compound data (automatically extracts from PC_Compounds wrapper for JSON format)

Source code in src/provesid/pubchem.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
@cached(service='pubchem')
def get_compound_by_cid(self, cid: Union[int, str], output_format: str = OutputFormat.JSON) -> Any:
    """
    Get compound record by CID

    Args:
        cid: Compound ID
        output_format: Desired output format

    Returns:
        Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cid, 
                         Operation.RECORD, output_format)
    response = self._make_request(url)
    result = self._parse_response(response, output_format)

    # For JSON format, automatically extract the compound data from the wrapper
    if output_format == OutputFormat.JSON and isinstance(result, dict):
        if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
            return result["PC_Compounds"][0]

    return result
get_compounds_by_name(name, output_format=OutputFormat.JSON, name_type='word')

Get compounds by name

Parameters:

Name Type Description Default
name str

Compound name

required
output_format str

Desired output format

JSON
name_type str

Name search type ("word" or "complete")

'word'

Returns:

Type Description
Any

Compound data (automatically extracts from PC_Compounds wrapper for JSON format)

Source code in src/provesid/pubchem.py
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
@cached(service='pubchem')
def get_compounds_by_name(self, name: str, output_format: str = OutputFormat.JSON,
                         name_type: str = "word") -> Any:
    """
    Get compounds by name

    Args:
        name: Compound name
        output_format: Desired output format
        name_type: Name search type ("word" or "complete")

    Returns:
        Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.NAME, name,
                         Operation.RECORD, output_format, name_type=name_type)
    response = self._make_request(url)
    result = self._parse_response(response, output_format)

    # For JSON format, automatically extract the compound data from the wrapper
    if output_format == OutputFormat.JSON and isinstance(result, dict):
        if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
            # If there's only one compound, return it directly, otherwise return the list
            if len(result["PC_Compounds"]) == 1:
                return result["PC_Compounds"][0]
            else:
                return result["PC_Compounds"]

    return result
get_compounds_by_smiles(smiles, output_format=OutputFormat.JSON)

Get compounds by SMILES

Parameters:

Name Type Description Default
smiles str

SMILES string

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Compound data (automatically extracts from PC_Compounds wrapper for JSON format)

Source code in src/provesid/pubchem.py
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
@cached(service='pubchem')
def get_compounds_by_smiles(self, smiles: str, output_format: str = OutputFormat.JSON) -> Any:
    """
    Get compounds by SMILES

    Args:
        smiles: SMILES string
        output_format: Desired output format

    Returns:
        Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.SMILES, smiles,
                         Operation.RECORD, output_format)
    response = self._make_request(url)
    result = self._parse_response(response, output_format)

    # For JSON format, automatically extract the compound data from the wrapper
    if output_format == OutputFormat.JSON and isinstance(result, dict):
        if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
            # If there's only one compound, return it directly, otherwise return the list
            if len(result["PC_Compounds"]) == 1:
                return result["PC_Compounds"][0]
            else:
                return result["PC_Compounds"]

    return result
get_compounds_by_inchikey(inchikey, output_format=OutputFormat.JSON)

Get compounds by InChIKey

Parameters:

Name Type Description Default
inchikey str

InChI Key

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Compound data (automatically extracts from PC_Compounds wrapper for JSON format)

Source code in src/provesid/pubchem.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
@cached(service='pubchem')
def get_compounds_by_inchikey(self, inchikey: str, output_format: str = OutputFormat.JSON) -> Any:
    """
    Get compounds by InChIKey

    Args:
        inchikey: InChI Key
        output_format: Desired output format

    Returns:
        Compound data (automatically extracts from PC_Compounds wrapper for JSON format)
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.INCHIKEY, inchikey,
                         Operation.RECORD, output_format)
    response = self._make_request(url)
    result = self._parse_response(response, output_format)

    # For JSON format, automatically extract the compound data from the wrapper
    if output_format == OutputFormat.JSON and isinstance(result, dict):
        if "PC_Compounds" in result and isinstance(result["PC_Compounds"], list) and len(result["PC_Compounds"]) > 0:
            # If there's only one compound, return it directly, otherwise return the list
            if len(result["PC_Compounds"]) == 1:
                return result["PC_Compounds"][0]
            else:
                return result["PC_Compounds"]

    return result
get_compound_properties(cid, properties, include_synonyms=True, output_format=OutputFormat.JSON)

Get compound properties and synonyms by CID with direct property access

Parameters:

Name Type Description Default
cid Union[int, str]

Single Compound ID

required
properties List[str]

List of property names

required
include_synonyms bool

Whether to include synonyms in the output

True
output_format str

Desired output format

JSON

Returns:

Type Description
Dict[str, Any]

Dictionary with properties directly accessible at top level,

Dict[str, Any]

plus 'success', 'cid', 'synonyms', and 'error' metadata keys

Source code in src/provesid/pubchem.py
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
@cached(service='pubchem')
def get_compound_properties(self, cid: Union[int, str], 
                           properties: List[str], 
                           include_synonyms: bool = True,
                           output_format: str = OutputFormat.JSON) -> Dict[str, Any]:
    """
    Get compound properties and synonyms by CID with direct property access

    Args:
        cid: Single Compound ID
        properties: List of property names
        include_synonyms: Whether to include synonyms in the output
        output_format: Desired output format

    Returns:
        Dictionary with properties directly accessible at top level,
        plus 'success', 'cid', 'synonyms', and 'error' metadata keys
    """
    # Convert list to tuple for caching
    properties_tuple = tuple(properties)
    return self._cached_get_compound_properties(cid, properties_tuple, include_synonyms, output_format)
get_compound_properties_batch(cids, properties, output_format=OutputFormat.JSON)

Get compound properties for multiple CIDs (legacy batch method)

Parameters:

Name Type Description Default
cids List[Union[int, str]]

List of CIDs

required
properties List[str]

List of property names

required
output_format str

Desired output format

JSON

Returns:

Type Description
List[Dict[str, Any]]

List of dictionaries, each with flat structure like get_compound_properties

Source code in src/provesid/pubchem.py
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
def get_compound_properties_batch(self, cids: List[Union[int, str]], 
                                 properties: List[str], 
                                 output_format: str = OutputFormat.JSON) -> List[Dict[str, Any]]:
    """
    Get compound properties for multiple CIDs (legacy batch method)

    Args:
        cids: List of CIDs
        properties: List of property names
        output_format: Desired output format

    Returns:
        List of dictionaries, each with flat structure like get_compound_properties
    """
    results = []
    for cid in cids:
        try:
            result = self.get_compound_properties(cid, properties, include_synonyms=False, output_format=output_format)
            results.append(result)
        except Exception as e:
            results.append({
                "success": False,
                "cid": cid,
                "error": str(e)
            })
    return results
get_compound_synonyms(cid, output_format=OutputFormat.JSON)

Get compound synonyms by CID

Parameters:

Name Type Description Default
cid Union[int, str]

Compound ID

required
output_format str

Desired output format

JSON

Returns:

Type Description
List[str]

List of synonyms (flattened from nested structure)

Source code in src/provesid/pubchem.py
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
@cached(service='pubchem')
def get_compound_synonyms(self, cid: Union[int, str], output_format: str = OutputFormat.JSON) -> List[str]:
    """
    Get compound synonyms by CID

    Args:
        cid: Compound ID
        output_format: Desired output format

    Returns:
        List of synonyms (flattened from nested structure)
    """
    try:
        url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cid,
                             Operation.SYNONYMS, output_format)
        response = self._make_request(url)
        raw_data = self._parse_response(response, output_format)

        # Extract synonyms from nested structure
        if raw_data and 'InformationList' in raw_data:
            info_list = raw_data['InformationList'].get('Information', [])
            if info_list and len(info_list) > 0:
                return info_list[0].get('Synonym', [])

        # Return empty list if no synonyms found
        return []

    except Exception:
        # Return empty list on error to maintain consistent return type
        return []
get_cids_by_name(name, output_format=OutputFormat.JSON, name_type='word', domain=Domain.COMPOUND)

Get CIDs by name from compound or substance domain

Parameters:

Name Type Description Default
name str

Compound or substance name

required
output_format str

Desired output format

JSON
name_type str

Name search type ("word" or "complete")

'word'
domain str

Search domain (Domain.COMPOUND or Domain.SUBSTANCE)

COMPOUND

Returns:

Type Description
Any

CID list (extracted from nested response structure)

Note

When searching in the substance domain, this can find CIDs for substances that may not be directly searchable in the compound domain.

Source code in src/provesid/pubchem.py
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
@cached(service='pubchem')
def get_cids_by_name(self, name: str, output_format: str = OutputFormat.JSON,
                    name_type: str = "word", domain: str = Domain.COMPOUND) -> Any:
    """
    Get CIDs by name from compound or substance domain

    Args:
        name: Compound or substance name
        output_format: Desired output format
        name_type: Name search type ("word" or "complete")
        domain: Search domain (Domain.COMPOUND or Domain.SUBSTANCE)

    Returns:
        CID list (extracted from nested response structure)

    Note:
        When searching in the substance domain, this can find CIDs for substances
        that may not be directly searchable in the compound domain.
    """
    # Choose appropriate namespace based on domain
    if domain == Domain.COMPOUND:
        namespace = CompoundDomainNamespace.NAME
    elif domain == Domain.SUBSTANCE:
        namespace = SubstanceDomainNamespace.NAME
    else:
        raise ValueError(f"Unsupported domain: {domain}. Use Domain.COMPOUND or Domain.SUBSTANCE")

    url = self._build_url(domain, namespace, name,
                         Operation.CIDS, output_format, name_type=name_type)
    response = self._make_request(url)
    parsed_response = self._parse_response(response, output_format)

    # Extract CID list from nested structure if JSON format
    if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
        # Handle compound domain response structure
        if 'IdentifierList' in parsed_response and 'CID' in parsed_response['IdentifierList']:
            return parsed_response['IdentifierList']['CID']
        # Handle substance domain response structure
        elif 'InformationList' in parsed_response and 'Information' in parsed_response['InformationList']:
            cids = []
            for info in parsed_response['InformationList']['Information']:
                if 'CID' in info:
                    cids.extend(info['CID'])
            return list(set(cids))  # Remove duplicates and return unique CIDs
        elif 'Fault' in parsed_response:
            # Handle API fault response
            raise PubChemNotFoundError(f"No CIDs found for name: {name}")

    # Return original response for non-JSON formats or if structure is different
    return parsed_response
get_cids_by_smiles(smiles, output_format=OutputFormat.JSON)

Get CIDs by SMILES

Parameters:

Name Type Description Default
smiles str

SMILES string

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

CID list (extracted from nested response structure)

Source code in src/provesid/pubchem.py
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
@cached(service='pubchem')
def get_cids_by_smiles(self, smiles: str, output_format: str = OutputFormat.JSON) -> Any:
    """
    Get CIDs by SMILES

    Args:
        smiles: SMILES string
        output_format: Desired output format

    Returns:
        CID list (extracted from nested response structure)
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.SMILES, smiles,
                         Operation.CIDS, output_format)
    response = self._make_request(url)
    parsed_response = self._parse_response(response, output_format)

    # Extract CID list from nested structure if JSON format
    if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
        if 'IdentifierList' in parsed_response and 'CID' in parsed_response['IdentifierList']:
            return parsed_response['IdentifierList']['CID']
        elif 'Fault' in parsed_response:
            # Handle API fault response
            raise PubChemNotFoundError(f"No CIDs found for SMILES: {smiles}")

    # Return original response for non-JSON formats or if structure is different
    return parsed_response
get_cids_by_inchikey(inchikey, output_format=OutputFormat.JSON)

Get CIDs by InChI Key

Parameters:

Name Type Description Default
inchikey str

InChI Key string

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

CID list (extracted from nested response structure)

Source code in src/provesid/pubchem.py
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
@cached(service='pubchem')
def get_cids_by_inchikey(self, inchikey: str, output_format: str = OutputFormat.JSON) -> Any:
    """
    Get CIDs by InChI Key

    Args:
        inchikey: InChI Key string
        output_format: Desired output format

    Returns:
        CID list (extracted from nested response structure)
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.INCHIKEY, inchikey,
                         Operation.CIDS, output_format)
    response = self._make_request(url)
    parsed_response = self._parse_response(response, output_format)

    # Extract CID list from nested structure if JSON format
    if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
        if 'IdentifierList' in parsed_response and 'CID' in parsed_response['IdentifierList']:
            return parsed_response['IdentifierList']['CID']
        elif 'Fault' in parsed_response:
            # Handle API fault response
            raise PubChemNotFoundError(f"No CIDs found for InChI Key: {inchikey}")

    # Return original response for non-JSON formats or if structure is different
    return parsed_response
get_cids_by_formula(formula, output_format=OutputFormat.JSON, allow_other_elements=False)

Get CIDs by molecular formula using fast search

Parameters:

Name Type Description Default
formula str

Molecular formula

required
output_format str

Desired output format

JSON
allow_other_elements bool

Allow other elements beyond those specified

False

Returns:

Type Description
Any

CID list

Source code in src/provesid/pubchem.py
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
@cached(service='pubchem')
def get_cids_by_formula(self, formula: str, output_format: str = OutputFormat.JSON,
                       allow_other_elements: bool = False) -> Any:
    """
    Get CIDs by molecular formula using fast search

    Args:
        formula: Molecular formula
        output_format: Desired output format
        allow_other_elements: Allow other elements beyond those specified

    Returns:
        CID list
    """
    url = self._build_url(Domain.COMPOUND, FastSearch.FASTFORMULA, formula,
                         Operation.CIDS, output_format, 
                         AllowOtherElements=allow_other_elements)
    response = self._make_request(url)
    return self._parse_response(response, output_format)

Perform substructure search

Parameters:

Name Type Description Default
query str

Query structure (SMILES, CID, etc.)

required
query_type str

Type of query (smiles, cid, etc.)

'smiles'
output_format str

Desired output format

JSON
**options Any

Search options (MatchIsotopes, MaxRecords, etc.)

{}

Returns:

Type Description
Any

Search results

Source code in src/provesid/pubchem.py
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
def substructure_search(self, query: str, query_type: str = "smiles", 
                       output_format: str = OutputFormat.JSON, **options: Any) -> Any:
    """
    Perform substructure search

    Args:
        query: Query structure (SMILES, CID, etc.)
        query_type: Type of query (smiles, cid, etc.)
        output_format: Desired output format
        **options: Search options (MatchIsotopes, MaxRecords, etc.)

    Returns:
        Search results
    """
    options_tuple = self._make_options_hashable(**options)
    return self._cached_substructure_search(query, query_type, output_format, options_tuple)

Perform superstructure search

Parameters:

Name Type Description Default
query str

Query structure (SMILES, CID, etc.)

required
query_type str

Type of query (smiles, cid, etc.)

'smiles'
output_format str

Desired output format

JSON
**options Any

Search options

{}

Returns:

Type Description
Any

Search results

Source code in src/provesid/pubchem.py
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
def superstructure_search(self, query: str, query_type: str = "smiles",
                         output_format: str = OutputFormat.JSON, **options: Any) -> Any:
    """
    Perform superstructure search

    Args:
        query: Query structure (SMILES, CID, etc.)
        query_type: Type of query (smiles, cid, etc.)
        output_format: Desired output format
        **options: Search options

    Returns:
        Search results
    """
    options_tuple = self._make_options_hashable(**options)
    return self._cached_superstructure_search(query, query_type, output_format, options_tuple)

Perform 2D similarity search

Parameters:

Name Type Description Default
query str

Query structure (SMILES, CID, etc.)

required
query_type str

Type of query (smiles, cid, etc.)

'smiles'
threshold int

Similarity threshold (0-100)

90
output_format str

Desired output format

JSON
**options Any

Search options

{}

Returns:

Type Description
Any

Search results

Source code in src/provesid/pubchem.py
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
@cached(service='pubchem')
def similarity_search(self, query: str, query_type: str = "smiles",
                     threshold: int = 90, output_format: str = OutputFormat.JSON,
                     **options: Any) -> Any:
    """
    Perform 2D similarity search

    Args:
        query: Query structure (SMILES, CID, etc.)
        query_type: Type of query (smiles, cid, etc.)
        threshold: Similarity threshold (0-100)
        output_format: Desired output format
        **options: Search options

    Returns:
        Search results
    """
    options_tuple = self._make_options_hashable(**options)
    return self._cached_similarity_search(query, query_type, threshold, output_format, options_tuple)

Perform identity search

Parameters:

Name Type Description Default
query str

Query structure (SMILES, CID, etc.)

required
query_type str

Type of query (smiles, cid, etc.)

'smiles'
identity_type str

Type of identity match

'same_stereo_isotope'
output_format str

Desired output format

JSON
**options Any

Search options

{}

Returns:

Type Description
Any

Search results

Source code in src/provesid/pubchem.py
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
@cached(service='pubchem')
def identity_search(self, query: str, query_type: str = "smiles",
                   identity_type: str = "same_stereo_isotope",
                   output_format: str = OutputFormat.JSON, **options: Any) -> Any:
    """
    Perform identity search

    Args:
        query: Query structure (SMILES, CID, etc.)
        query_type: Type of query (smiles, cid, etc.)
        identity_type: Type of identity match
        output_format: Desired output format
        **options: Search options

    Returns:
        Search results
    """
    options_tuple = self._make_options_hashable(**options)
    return self._cached_identity_search(query, query_type, identity_type, output_format, options_tuple)
get_substance_by_sid(sid, output_format=OutputFormat.JSON)

Get substance by SID

Parameters:

Name Type Description Default
sid Union[int, str]

Substance ID

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Substance data (automatically extracts from PC_Substances wrapper for JSON format)

Source code in src/provesid/pubchem.py
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
@cached(service='pubchem')
def get_substance_by_sid(self, sid: Union[int, str], output_format: str = OutputFormat.JSON) -> Any:
    """
    Get substance by SID

    Args:
        sid: Substance ID
        output_format: Desired output format

    Returns:
        Substance data (automatically extracts from PC_Substances wrapper for JSON format)
    """
    url = self._build_url(Domain.SUBSTANCE, SubstanceDomainNamespace.SID, sid,
                         Operation.RECORD, output_format)
    response = self._make_request(url)
    result = self._parse_response(response, output_format)

    # For JSON format, automatically extract the substance data from the wrapper
    if output_format == OutputFormat.JSON and isinstance(result, dict):
        if "PC_Substances" in result and isinstance(result["PC_Substances"], list) and len(result["PC_Substances"]) > 0:
            return result["PC_Substances"][0]

    return result
get_substances_by_name(name, output_format=OutputFormat.JSON)

Get substances by name

Parameters:

Name Type Description Default
name str

Substance name

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Substance data (automatically extracts from PC_Substances wrapper for JSON format)

Source code in src/provesid/pubchem.py
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
@cached(service='pubchem')
def get_substances_by_name(self, name: str, output_format: str = OutputFormat.JSON) -> Any:
    """
    Get substances by name

    Args:
        name: Substance name
        output_format: Desired output format

    Returns:
        Substance data (automatically extracts from PC_Substances wrapper for JSON format)
    """
    url = self._build_url(Domain.SUBSTANCE, SubstanceDomainNamespace.NAME, name,
                         Operation.RECORD, output_format)
    response = self._make_request(url)
    result = self._parse_response(response, output_format)

    # For JSON format, automatically extract the substance data from the wrapper
    if output_format == OutputFormat.JSON and isinstance(result, dict):
        if "PC_Substances" in result and isinstance(result["PC_Substances"], list) and len(result["PC_Substances"]) > 0:
            # If there's only one substance, return it directly, otherwise return the list
            if len(result["PC_Substances"]) == 1:
                return result["PC_Substances"][0]
            else:
                return result["PC_Substances"]

    return result
get_sids_by_name(name, output_format=OutputFormat.JSON, sourcename=None)

Get SIDs by name

Parameters:

Name Type Description Default
name str

Substance name

required
output_format str

Desired output format

JSON
sourcename Optional[str]

Restrict to specific source

None

Returns:

Type Description
Any

SID list (extracted from nested response structure)

Source code in src/provesid/pubchem.py
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
@cached(service='pubchem')
def get_sids_by_name(self, name: str, output_format: str = OutputFormat.JSON,
                    sourcename: Optional[str] = None) -> Any:
    """
    Get SIDs by name

    Args:
        name: Substance name
        output_format: Desired output format
        sourcename: Restrict to specific source

    Returns:
        SID list (extracted from nested response structure)
    """
    options = {}
    if sourcename:
        options['sourcename'] = sourcename

    url = self._build_url(Domain.SUBSTANCE, SubstanceDomainNamespace.NAME, name,
                         Operation.SIDS, output_format, **options)
    response = self._make_request(url)
    parsed_response = self._parse_response(response, output_format)

    # Extract SID list from nested structure if JSON format
    if output_format == OutputFormat.JSON and isinstance(parsed_response, dict):
        if 'IdentifierList' in parsed_response and 'SID' in parsed_response['IdentifierList']:
            return parsed_response['IdentifierList']['SID']
        elif 'Fault' in parsed_response:
            # Handle API fault response
            raise PubChemNotFoundError(f"No SIDs found for name: {name}")

    # Return original response for non-JSON formats or if structure is different
    return parsed_response
get_assay_by_aid(aid, output_format=OutputFormat.JSON)

Get assay by AID

Parameters:

Name Type Description Default
aid Union[int, str]

Assay ID

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Assay data

Source code in src/provesid/pubchem.py
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
@cached(service='pubchem')
def get_assay_by_aid(self, aid: Union[int, str], output_format: str = OutputFormat.JSON) -> Any:
    """
    Get assay by AID

    Args:
        aid: Assay ID
        output_format: Desired output format

    Returns:
        Assay data
    """
    url = self._build_url(Domain.ASSAY, AssayDomainNamespace.AID, aid,
                         Operation.RECORD, output_format)
    response = self._make_request(url)
    return self._parse_response(response, output_format)
get_assay_summary(cids, output_format=OutputFormat.JSON)

Get assay summary for compounds

Parameters:

Name Type Description Default
cids Union[int, str, List[Union[int, str]]]

Single CID or list of CIDs

required
output_format str

Desired output format

JSON

Returns:

Type Description
Any

Assay summary data

Source code in src/provesid/pubchem.py
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
@cached(service='pubchem')
def get_assay_summary(self, cids: Union[int, str, List[Union[int, str]]],
                     output_format: str = OutputFormat.JSON) -> Any:
    """
    Get assay summary for compounds

    Args:
        cids: Single CID or list of CIDs
        output_format: Desired output format

    Returns:
        Assay summary data
    """
    url = self._build_url(Domain.COMPOUND, CompoundDomainNamespace.CID, cids,
                         Operation.ASSAYSUMMARY, output_format)
    response = self._make_request(url)
    return self._parse_response(response, output_format)
search_compound(query, search_type='name')

Search for compound with automatic format detection

Parameters:

Name Type Description Default
query str

Search query (name, SMILES, InChIKey, etc.)

required
search_type str

Type of search ("name", "smiles", "inchikey", "cid")

'name'

Returns:

Type Description
Dict[str, Any]

Dictionary with search results and metadata

Source code in src/provesid/pubchem.py
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
@cached(service='pubchem')
def search_compound(self, query: str, search_type: str = "name") -> Dict[str, Any]:
    """
    Search for compound with automatic format detection

    Args:
        query: Search query (name, SMILES, InChIKey, etc.)
        search_type: Type of search ("name", "smiles", "inchikey", "cid")

    Returns:
        Dictionary with search results and metadata
    """
    try:
        if search_type == "name":
            result = self.get_compounds_by_name(query)
        elif search_type == "smiles":
            result = self.get_compounds_by_smiles(query)
        elif search_type == "inchikey":
            result = self.get_compounds_by_inchikey(query)
        elif search_type == "cid":
            result = self.get_compound_by_cid(query)
        else:
            raise ValueError(f"Unsupported search type: {search_type}")

        return {
            "success": True,
            "query": query,
            "search_type": search_type,
            "data": result,
            "error": None
        }

    except Exception as e:
        return {
            "success": False,
            "query": query,
            "search_type": search_type,
            "data": None,
            "error": str(e)
        }
format_search_compound_result(search_result, index=None)

Convert search_compound output to a nicely formatted dictionary with flat structure

Extracts properties from the nested props structure in search_compound results and creates a dictionary similar to get_all_compound_info output.

Parameters:

Name Type Description Default
search_result Dict[str, Any]

The result dictionary from search_compound()

required
index Optional[int]

If search returns multiple results, specify which one to format (0-based). If None and multiple results exist, returns a list of all formatted results.

None

Returns:

Type Description
Union[Dict[str, Any], List[Dict[str, Any]]]

Dictionary with formatted properties, or list of dictionaries if multiple results.

Union[Dict[str, Any], List[Dict[str, Any]]]

If search was unsuccessful or data is missing, returns a dictionary with

Union[Dict[str, Any], List[Dict[str, Any]]]

success=False and error message.

Examples:

>>> pch = PubChemAPI()
>>> # Single result (e.g., CAS number)
>>> res = pch.search_compound("50-00-0")
>>> formatted = pch.format_search_compound_result(res)
>>> print(formatted.get("MolecularFormula"))
'CH2O'
>>> # Multiple results (e.g., common name)
>>> res = pch.search_compound("aspirin")
>>> formatted = pch.format_search_compound_result(res, index=0)  # Get first result
>>> # Or get all results
>>> all_formatted = pch.format_search_compound_result(res)  # Returns list
Source code in src/provesid/pubchem.py
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
def format_search_compound_result(self, search_result: Dict[str, Any], 
                                  index: Optional[int] = None) -> Union[Dict[str, Any], List[Dict[str, Any]]]:
    """
    Convert search_compound output to a nicely formatted dictionary with flat structure

    Extracts properties from the nested props structure in search_compound results
    and creates a dictionary similar to get_all_compound_info output.

    Args:
        search_result: The result dictionary from search_compound()
        index: If search returns multiple results, specify which one to format (0-based).
               If None and multiple results exist, returns a list of all formatted results.

    Returns:
        Dictionary with formatted properties, or list of dictionaries if multiple results.
        If search was unsuccessful or data is missing, returns a dictionary with 
        success=False and error message.

    Examples:
        >>> pch = PubChemAPI()
        >>> # Single result (e.g., CAS number)
        >>> res = pch.search_compound("50-00-0")
        >>> formatted = pch.format_search_compound_result(res)
        >>> print(formatted.get("MolecularFormula"))
        'CH2O'

        >>> # Multiple results (e.g., common name)
        >>> res = pch.search_compound("aspirin")
        >>> formatted = pch.format_search_compound_result(res, index=0)  # Get first result
        >>> # Or get all results
        >>> all_formatted = pch.format_search_compound_result(res)  # Returns list
    """
    # Check if search was successful
    if not search_result.get("success"):
        return {
            "success": False,
            "error": search_result.get("error", "Search was not successful"),
            "query": search_result.get("query"),
            "search_type": search_result.get("search_type")
        }

    # Check if data exists
    data = search_result.get("data")
    if not data:
        return {
            "success": False,
            "error": "No data found in search result",
            "query": search_result.get("query"),
            "search_type": search_result.get("search_type")
        }

    # Handle multiple results (list of compounds)
    if isinstance(data, list):
        if index is not None:
            # Format specific index
            if 0 <= index < len(data):
                return self._format_single_compound(data[index], search_result)
            else:
                return {
                    "success": False,
                    "error": f"Index {index} out of range (0-{len(data)-1})",
                    "query": search_result.get("query"),
                    "search_type": search_result.get("search_type")
                }
        else:
            # Format all results
            return [self._format_single_compound(compound, search_result) 
                    for compound in data]

    # Handle single result (dict)
    if "props" not in data:
        return {
            "success": False,
            "error": "No properties data found in search result",
            "query": search_result.get("query"),
            "search_type": search_result.get("search_type")
        }

    return self._format_single_compound(data, search_result)
get_basic_compound_info(cid, include_synonyms=False)

Get basic compound information including formula, molecular weight, and structure, and IUPAC name. Synonyms can be included optionally.

Parameters:

Name Type Description Default
cid Union[int, str]

Compound ID

required
include_synonyms bool

Whether to include synonyms in the response

False

Returns:

Type Description
Dict[str, Any]

Dictionary with compound properties directly accessible at top level,

Dict[str, Any]

plus 'success', 'cid', 'synonyms', and 'error' metadata keys

Source code in src/provesid/pubchem.py
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
@cached(service='pubchem')
def get_basic_compound_info(self, cid: Union[int, str], 
                            include_synonyms: bool = False) -> Dict[str, Any]:
    """
    Get basic compound information including formula, molecular weight, 
    and structure, and IUPAC name. Synonyms can be included optionally.

    Args:
        cid: Compound ID
        include_synonyms: Whether to include synonyms in the response

    Returns:
        Dictionary with compound properties directly accessible at top level,
        plus 'success', 'cid', 'synonyms', and 'error' metadata keys
    """
    # Get basic properties with synonyms
    properties = [
        CompoundProperties.MOLECULAR_FORMULA,
        CompoundProperties.MOLECULAR_WEIGHT,
        CompoundProperties.SMILES,
        CompoundProperties.INCHI,
        CompoundProperties.INCHIKEY,
        CompoundProperties.IUPAC_NAME
    ]

    # Use the new get_compound_properties method which already includes synonyms and metadata
    return self.get_compound_properties(cid, properties, include_synonyms=include_synonyms)
get_all_compound_info(cid)

Get all compound properties as listed in CompoundProperties

Parameters:

Name Type Description Default
cid Union[int, str]

Compound ID

required

Returns:

Type Description
Dict[str, Any]

Dictionary with compound properties directly accessible at top level,

Dict[str, Any]

plus 'success', 'cid', and 'error' metadata keys

Source code in src/provesid/pubchem.py
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
@cached(service='pubchem')
def get_all_compound_info(self, cid: Union[int, str]) -> Dict[str, Any]:
    """
    Get all compound properties as listed in CompoundProperties

    Args:
        cid: Compound ID

    Returns:
        Dictionary with compound properties directly accessible at top level,
        plus 'success', 'cid', and 'error' metadata keys
    """
    # Get all property values from CompoundProperties class
    properties = []
    for attr_name in dir(CompoundProperties):
        if not attr_name.startswith("_"):
            prop_value = getattr(CompoundProperties, attr_name)
            if isinstance(prop_value, str):
                properties.append(prop_value)

    # Use the new get_compound_properties method which already returns flat data
    return self.get_compound_properties(cid, properties, include_synonyms=False)
extract_identifiers_from_synonyms(synonyms)

Extract chemical identifiers from a list of synonyms

Parameters:

Name Type Description Default
synonyms List[str]

List of synonym strings

required

Returns:

Type Description
Dict[str, List[str]]

Dictionary with lists of unique identifiers for each type:

Dict[str, List[str]]
  • casrn: CAS Registry Numbers (format: 2-5 digit-2 digit-single digit)
Dict[str, List[str]]
  • nsc: NSC numbers (begins with NSC)
Dict[str, List[str]]
  • dtxsid: DTXSID identifiers (begins with DTXSID)
Dict[str, List[str]]
  • dtxcid: DTXCID identifiers (begins with DTXCID)
Dict[str, List[str]]
  • ec_number: EC numbers (format: NNN-NNN-N)
Dict[str, List[str]]
  • chebi_id: ChEBI IDs (begins with CHEBI)
Dict[str, List[str]]
  • chembl: ChEMBL numbers (begins with CHEMBL)
Source code in src/provesid/pubchem.py
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
def extract_identifiers_from_synonyms(self, synonyms: List[str]) -> Dict[str, List[str]]:
    """
    Extract chemical identifiers from a list of synonyms

    Args:
        synonyms: List of synonym strings

    Returns:
        Dictionary with lists of unique identifiers for each type:
        - casrn: CAS Registry Numbers (format: 2-5 digit-2 digit-single digit)
        - nsc: NSC numbers (begins with NSC)
        - dtxsid: DTXSID identifiers (begins with DTXSID)
        - dtxcid: DTXCID identifiers (begins with DTXCID)
        - ec_number: EC numbers (format: NNN-NNN-N)
        - chebi_id: ChEBI IDs (begins with CHEBI)
        - chembl: ChEMBL numbers (begins with CHEMBL)
    """
    identifiers = {
        'casrn': [],
        'nsc': [],
        'dtxsid': [],
        'dtxcid': [],
        'ec_number': [],
        'chebi_id': [],
        'chembl': []
    }

    for synonym in synonyms:
        if not isinstance(synonym, str):
            continue

        synonym_upper = synonym.upper().strip()

        # CAS Registry Number: 2-5 digits, hyphen, 2 digits, hyphen, 1 digit
        # May or may not begin with "CAS"
        cas_patterns = [
            r'\b(?:CAS\s*[:\-]?\s*)?(\d{2,7}-\d{2}-\d)\b',  # With optional CAS prefix and separators
        ]
        for pattern in cas_patterns:
            matches = re.findall(pattern, synonym_upper)
            for match in matches:
                # Validate CAS number format more strictly
                if re.match(r'^\d{2,7}-\d{2}-\d$', match):
                    if match not in identifiers['casrn']:
                        identifiers['casrn'].append(match)

        # NSC Number: begins with NSC
        nsc_match = re.search(r'\b(NSC\s*\d+)\b', synonym_upper)
        if nsc_match:
            nsc = nsc_match.group(1).replace(' ', '')
            if nsc not in identifiers['nsc']:
                identifiers['nsc'].append(nsc)

        # DTXSID: begins with DTXSID
        dtxsid_match = re.search(r'\b(DTXSID\d+)\b', synonym_upper)
        if dtxsid_match:
            dtxsid = dtxsid_match.group(1)
            if dtxsid not in identifiers['dtxsid']:
                identifiers['dtxsid'].append(dtxsid)

        # DTXCID: begins with DTXCID
        dtxcid_match = re.search(r'\b(DTXCID\d+)\b', synonym_upper)
        if dtxcid_match:
            dtxcid = dtxcid_match.group(1)
            if dtxcid not in identifiers['dtxcid']:
                identifiers['dtxcid'].append(dtxcid)

        # EC Number: standard format is N.N.N.N (enzyme classification)
        # Only accept the standard dot-separated format
        ec_pattern = r'\b(?:EC\s*[:\-]?\s*)?(\d{1,2}\.\d{1,3}\.\d{1,3}\.(?:\d{1,3}|\-))\b'
        matches = re.findall(ec_pattern, synonym_upper)
        for match in matches:
            if match not in identifiers['ec_number']:
                identifiers['ec_number'].append(match)

        # ChEBI ID: begins with CHEBI
        chebi_match = re.search(r'\b(CHEBI:?\s*\d+)\b', synonym_upper)
        if chebi_match:
            chebi = chebi_match.group(1).replace(' ', '').replace(':', ':')
            # Standardize format to CHEBI:XXXXX
            if not chebi.startswith('CHEBI:'):
                chebi = chebi.replace('CHEBI', 'CHEBI:')
            if chebi not in identifiers['chebi_id']:
                identifiers['chebi_id'].append(chebi)

        # ChEMBL: begins with CHEMBL
        chembl_match = re.search(r'\b(CHEMBL\d+)\b', synonym_upper)
        if chembl_match:
            chembl = chembl_match.group(1)
            if chembl not in identifiers['chembl']:
                identifiers['chembl'].append(chembl)

    return identifiers
get_compound_identifiers(cid)

Get compound identifiers extracted from synonyms

Parameters:

Name Type Description Default
cid Union[int, str]

Compound ID

required

Returns:

Type Description
Dict[str, Any]

Dictionary with 'success', 'cid', 'error' metadata and extracted identifiers

Source code in src/provesid/pubchem.py
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
def get_compound_identifiers(self, cid: Union[int, str]) -> Dict[str, Any]:
    """
    Get compound identifiers extracted from synonyms

    Args:
        cid: Compound ID

    Returns:
        Dictionary with 'success', 'cid', 'error' metadata and extracted identifiers
    """
    try:
        # Get synonyms
        synonyms_list = self.get_compound_synonyms(cid)

        # Extract identifiers
        identifiers = self.extract_identifiers_from_synonyms(synonyms_list)

        # Add metadata
        result = {
            'success': True,
            'cid': cid,
            'error': None,
            'total_synonyms': len(synonyms_list)
        }
        result.update(identifiers)

        return result

    except Exception as e:
        return {
            'success': False,
            'cid': cid,
            'error': str(e),
            'casrn': [],
            'nsc': [],
            'dtxsid': [],
            'dtxcid': [],
            'ec_number': [],
            'chebi_id': [],
            'chembl': [],
            'total_synonyms': 0
        }
find_cids_comprehensive(name, name_type='word')

Search for CIDs in both compound and substance domains

This method first searches in the compound domain, and if no results are found, it searches in the substance domain. This is useful for comprehensive searching when you're not sure which domain contains the identifier.

Parameters:

Name Type Description Default
name str

Compound or substance name (including CAS numbers, trade names, etc.)

required
name_type str

Name search type ("word" or "complete")

'word'

Returns:

Type Description
Dict[str, Any]

Dictionary with search results from both domains

Source code in src/provesid/pubchem.py
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
def find_cids_comprehensive(self, name: str, name_type: str = "word") -> Dict[str, Any]:
    """
    Search for CIDs in both compound and substance domains

    This method first searches in the compound domain, and if no results are found,
    it searches in the substance domain. This is useful for comprehensive searching
    when you're not sure which domain contains the identifier.

    Args:
        name: Compound or substance name (including CAS numbers, trade names, etc.)
        name_type: Name search type ("word" or "complete")

    Returns:
        Dictionary with search results from both domains
    """
    results = {
        "query": name,
        "name_type": name_type,
        "compound_domain": {"cids": [], "success": False, "error": None},
        "substance_domain": {"cids": [], "success": False, "error": None},
        "total_unique_cids": [],
        "recommended_domain": None
    }

    # Try compound domain first
    try:
        compound_cids = self.get_cids_by_name(name, name_type=name_type, domain=Domain.COMPOUND)
        results["compound_domain"]["cids"] = compound_cids
        results["compound_domain"]["success"] = True
        results["total_unique_cids"].extend(compound_cids)
    except Exception as e:
        results["compound_domain"]["error"] = str(e)

    # Try substance domain
    try:
        substance_cids = self.get_cids_by_name(name, name_type=name_type, domain=Domain.SUBSTANCE)
        results["substance_domain"]["cids"] = substance_cids
        results["substance_domain"]["success"] = True
        results["total_unique_cids"].extend(substance_cids)
    except Exception as e:
        results["substance_domain"]["error"] = str(e)

    # Remove duplicates and determine recommended domain
    results["total_unique_cids"] = list(set(results["total_unique_cids"]))

    if results["compound_domain"]["success"] and results["substance_domain"]["success"]:
        # Both succeeded - recommend the one with more results
        compound_count = len(results["compound_domain"]["cids"])
        substance_count = len(results["substance_domain"]["cids"])
        results["recommended_domain"] = "compound" if compound_count >= substance_count else "substance"
    elif results["compound_domain"]["success"]:
        results["recommended_domain"] = "compound"
    elif results["substance_domain"]["success"]:
        results["recommended_domain"] = "substance"
    else:
        results["recommended_domain"] = None

    return results

PubChemID

Interface to PubChem ID SQLite database for fast identifier lookup and conversion.

This class provides access to a local SQLite database containing ~1.6M PubChem compounds with their identifiers (CID, CAS, InChI, InChIKey, SMILES) and chemical properties (molecular formula, molecular weight, LogP, complexity, etc.).

The database is built from PubChem_CAS_202601.csv using the build_pubchem_id_db.py script.

Attributes:

Name Type Description
db_path str

Path to the SQLite database file

conn Connection

Database connection

Example

from provesid import PubChemID db = PubChemID()

Lookup by CAS

result = db.get_by_cas("50-78-2") # Aspirin print(result['inchi'])

Lookup by InChIKey

result = db.get_by_inchikey("BSYNRYMUTXBXSQ-UHFFFAOYSA-N") print(result['cid'])

Convert CAS to InChI

inchi = db.cas_to_inchi("50-78-2")

Batch conversion

results = db.batch_cas_to_cid(["50-78-2", "50-00-0"])

Source code in src/provesid/pubchem.py
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
class PubChemID:
    """
    Interface to PubChem ID SQLite database for fast identifier lookup and conversion.

    This class provides access to a local SQLite database containing ~1.6M PubChem compounds
    with their identifiers (CID, CAS, InChI, InChIKey, SMILES) and chemical properties
    (molecular formula, molecular weight, LogP, complexity, etc.).

    The database is built from PubChem_CAS_202601.csv using the build_pubchem_id_db.py script.

    Attributes:
        db_path (str): Path to the SQLite database file
        conn (sqlite3.Connection): Database connection

    Example:
        >>> from provesid import PubChemID
        >>> db = PubChemID()
        >>> 
        >>> # Lookup by CAS
        >>> result = db.get_by_cas("50-78-2")  # Aspirin
        >>> print(result['inchi'])
        >>> 
        >>> # Lookup by InChIKey
        >>> result = db.get_by_inchikey("BSYNRYMUTXBXSQ-UHFFFAOYSA-N")
        >>> print(result['cid'])
        >>> 
        >>> # Convert CAS to InChI
        >>> inchi = db.cas_to_inchi("50-78-2")
        >>> 
        >>> # Batch conversion
        >>> results = db.batch_cas_to_cid(["50-78-2", "50-00-0"])
    """

    def __init__(self, db_path: Optional[str] = None, auto_download: bool = True):
        """
        Initialize PubChemID database connection.

        Args:
            db_path (str, optional): Path to SQLite database. If None, uses default
                                    location in data directory.
            auto_download (bool): If True, automatically download database if not found.
                                 Default is True.

        Raises:
            FileNotFoundError: If database file doesn't exist and auto_download is False
        """
        import sqlite3
        from .utils import data_path

        if db_path is None:
            db_path = os.path.join(data_path(), 'pubchem_id.db')

        self.db_path = db_path

        if not os.path.exists(db_path):
            if auto_download:
                print(f"Database not found at {db_path}")
                print("Attempting to download from Zenodo...")
                self.download_database()
            else:
                raise FileNotFoundError(
                    f"PubChem ID database not found at {db_path}. "
                    "Set auto_download=True or run scripts/build_pubchem_id_db.py to create it."
                )

        self.conn = sqlite3.connect(db_path)
        self.conn.row_factory = sqlite3.Row  # Access columns by name

    def __del__(self):
        """Close database connection on deletion."""
        if hasattr(self, 'conn'):
            self.conn.close()

    @staticmethod
    def download_database(db_path: Optional[str] = None, zenodo_url: Optional[str] = None) -> str:
        """
        Download PubChem ID database from Zenodo.

        Args:
            db_path (str, optional): Path where to save the database. If None, uses default
                                    location in data directory.
            zenodo_url (str, optional): URL to download from. If None, uses default Zenodo URL.
                                       Format: https://zenodo.org/record/XXXXXX/files/pubchem_id.db

        Returns:
            str: Path to the downloaded database file

        Example:
            >>> from provesid import PubChemID
            >>> # Download to default location
            >>> PubChemID.download_database()
            >>> 
            >>> # Or specify custom location
            >>> PubChemID.download_database(db_path='/path/to/pubchem_id.db')

        Note:
            After uploading to Zenodo, update the zenodo_url parameter with the actual URL.
            The database file is ~2.2 GB, so download may take several minutes.
        """
        import requests
        from .utils import data_path
        from tqdm import tqdm

        if db_path is None:
            db_path = os.path.join(data_path(), 'pubchem_id.db')

        if zenodo_url is None:
            zenodo_url = "https://zenodo.org/records/18173204/files/pubchem_id.db"

        print(f"Downloading PubChem ID database from Zenodo...")
        print(f"URL: {zenodo_url}")
        print(f"Destination: {db_path}")
        print("This is a large file (~2.2 GB), please be patient...")

        # Create temporary file path
        temp_path = db_path + '.tmp'

        try:
            # Download with progress bar
            response = requests.get(zenodo_url, stream=True)
            response.raise_for_status()

            total_size = int(response.headers.get('content-length', 0))

            with open(temp_path, 'wb') as f:
                with tqdm(total=total_size, unit='B', unit_scale=True, desc="Downloading") as pbar:
                    for chunk in response.iter_content(chunk_size=8192):
                        if chunk:
                            f.write(chunk)
                            pbar.update(len(chunk))

            print("Download complete. Verifying...")

            # Verify it's a valid SQLite database
            import sqlite3
            try:
                conn = sqlite3.connect(temp_path)
                cursor = conn.cursor()
                cursor.execute("SELECT COUNT(*) FROM compounds")
                count = cursor.fetchone()[0]
                conn.close()
                print(f"✓ Database verified: {count:,} compounds")
            except Exception as e:
                raise RuntimeError(f"Downloaded file is not a valid database: {e}")

            # Move to final location
            if os.path.exists(db_path):
                os.remove(db_path)
            os.rename(temp_path, db_path)

            print(f"✓ Database ready at {db_path}")
            return db_path

        except requests.exceptions.RequestException as e:
            if os.path.exists(temp_path):
                os.remove(temp_path)
            raise RuntimeError(f"Failed to download database: {e}")
        except Exception as e:
            if os.path.exists(temp_path):
                os.remove(temp_path)
            raise RuntimeError(f"Error during download: {e}")

    def get_by_cid(self, cid: int) -> Optional[Dict[str, Any]]:
        """
        Get compound information by PubChem CID.

        Args:
            cid (int): PubChem Compound ID

        Returns:
            dict: Compound information including identifiers and properties, or None if not found

        Example:
            >>> db = PubChemID()
            >>> result = db.get_by_cid(2244)  # Aspirin
            >>> print(result['cmpdname'])
            'Aspirin'
        """
        cursor = self.conn.cursor()
        cursor.execute("""
            SELECT * FROM compounds WHERE cid = ?
        """, (cid,))

        row = cursor.fetchone()
        if not row:
            return None

        result = dict(row)

        # Add CAS numbers
        cursor.execute("""
            SELECT cas FROM cas_numbers WHERE cid = ?
        """, (cid,))
        result['cas_numbers'] = [r[0] for r in cursor.fetchall()]

        # Add synonyms
        cursor.execute("""
            SELECT synonym FROM synonyms WHERE cid = ? LIMIT 100
        """, (cid,))
        result['synonyms'] = [r[0] for r in cursor.fetchall()]

        return result

    def get_by_cas(self, cas: str) -> Optional[Dict[str, Any]]:
        """
        Get compound information by CAS Registry Number.

        Args:
            cas (str): CAS Registry Number (e.g., "50-78-2")

        Returns:
            dict: Compound information, or None if not found

        Example:
            >>> db = PubChemID()
            >>> result = db.get_by_cas("50-78-2")  # Aspirin
            >>> print(result['inchi'])
        """
        cursor = self.conn.cursor()
        cursor.execute("""
            SELECT cid FROM cas_numbers WHERE cas = ? LIMIT 1
        """, (cas,))

        row = cursor.fetchone()
        if not row:
            return None

        return self.get_by_cid(row[0])

    def get_by_inchikey(self, inchikey: str) -> Optional[Dict[str, Any]]:
        """
        Get compound information by InChIKey.

        Args:
            inchikey (str): Standard InChIKey (27 characters)

        Returns:
            dict: Compound information, or None if not found

        Example:
            >>> db = PubChemID()
            >>> result = db.get_by_inchikey("BSYNRYMUTXBXSQ-UHFFFAOYSA-N")
            >>> print(result['cmpdname'])
        """
        cursor = self.conn.cursor()
        cursor.execute("""
            SELECT * FROM compounds WHERE inchikey = ?
        """, (inchikey,))

        row = cursor.fetchone()
        if not row:
            return None

        cid = row['cid']
        return self.get_by_cid(cid)

    def get_by_inchi(self, inchi: str) -> Optional[Dict[str, Any]]:
        """
        Get compound information by InChI string.

        Args:
            inchi (str): Standard InChI string

        Returns:
            dict: Compound information, or None if not found

        Example:
            >>> db = PubChemID()
            >>> result = db.get_by_inchi("InChI=1S/C9H8O4/c1-6(10)...")
            >>> print(result['cmpdname'])
        """
        cursor = self.conn.cursor()
        cursor.execute("""
            SELECT * FROM compounds WHERE inchi = ?
        """, (inchi,))

        row = cursor.fetchone()
        if not row:
            return None

        cid = row['cid']
        return self.get_by_cid(cid)

    def search_by_name(self, name: str, exact: bool = False, limit: int = 10) -> List[Dict[str, Any]]:
        """
        Search compounds by name or synonym.

        Args:
            name (str): Compound name or synonym to search for
            exact (bool): If True, exact match only. If False, partial match (case-insensitive)
            limit (int): Maximum number of results to return

        Returns:
            list: List of matching compounds

        Example:
            >>> db = PubChemID()
            >>> results = db.search_by_name("aspirin", exact=False)
            >>> for r in results:
            ...     print(r['cid'], r['cmpdname'])
        """
        cursor = self.conn.cursor()

        results = []

        if exact:
            # Search in main compound name
            cursor.execute("""
                SELECT cid FROM compounds WHERE cmpdname = ? LIMIT ?
            """, (name, limit))

            cids = [r[0] for r in cursor.fetchall()]

            # Also search in synonyms
            if len(cids) < limit:
                cursor.execute("""
                    SELECT DISTINCT cid FROM synonyms WHERE synonym = ? LIMIT ?
                """, (name, limit - len(cids)))
                cids.extend([r[0] for r in cursor.fetchall()])
        else:
            # Partial match with LIKE
            search_term = f"%{name}%"

            # Search in main compound name
            cursor.execute("""
                SELECT cid FROM compounds WHERE cmpdname LIKE ? LIMIT ?
            """, (search_term, limit))

            cids = [r[0] for r in cursor.fetchall()]

            # Also search in synonyms
            if len(cids) < limit:
                cursor.execute("""
                    SELECT DISTINCT cid FROM synonyms WHERE synonym LIKE ? LIMIT ?
                """, (search_term, limit - len(cids)))
                cids.extend([r[0] for r in cursor.fetchall()])

        # Get full compound info for each CID
        for cid in cids[:limit]:
            compound = self.get_by_cid(cid)
            if compound:
                results.append(compound)

        return results

    def search_by_formula(self, formula: str, limit: int = 100) -> List[Dict[str, Any]]:
        """
        Search compounds by molecular formula.

        Args:
            formula (str): Molecular formula (e.g., "C9H8O4")
            limit (int): Maximum number of results to return

        Returns:
            list: List of matching compounds

        Example:
            >>> db = PubChemID()
            >>> results = db.search_by_formula("C9H8O4")
            >>> print(f"Found {len(results)} compounds with formula C9H8O4")
        """
        cursor = self.conn.cursor()
        cursor.execute("""
            SELECT cid FROM compounds WHERE mf = ? LIMIT ?
        """, (formula, limit))

        results = []
        for row in cursor.fetchall():
            compound = self.get_by_cid(row[0])
            if compound:
                results.append(compound)

        return results

    # Conversion methods

    def cas_to_cid(self, cas: str) -> Optional[int]:
        """Convert CAS number to PubChem CID."""
        result = self.get_by_cas(cas)
        return result['cid'] if result else None

    def cas_to_inchi(self, cas: str) -> Optional[str]:
        """Convert CAS number to InChI."""
        result = self.get_by_cas(cas)
        return result['inchi'] if result else None

    def cas_to_inchikey(self, cas: str) -> Optional[str]:
        """Convert CAS number to InChIKey."""
        result = self.get_by_cas(cas)
        return result['inchikey'] if result else None

    def cas_to_smiles(self, cas: str) -> Optional[str]:
        """Convert CAS number to SMILES."""
        result = self.get_by_cas(cas)
        return result['smiles'] if result else None

    def inchikey_to_cid(self, inchikey: str) -> Optional[int]:
        """Convert InChIKey to PubChem CID."""
        result = self.get_by_inchikey(inchikey)
        return result['cid'] if result else None

    def inchikey_to_cas(self, inchikey: str) -> Optional[List[str]]:
        """Convert InChIKey to CAS number(s)."""
        result = self.get_by_inchikey(inchikey)
        return result['cas_numbers'] if result else None

    def inchi_to_cid(self, inchi: str) -> Optional[int]:
        """Convert InChI to PubChem CID."""
        result = self.get_by_inchi(inchi)
        return result['cid'] if result else None

    def inchi_to_cas(self, inchi: str) -> Optional[List[str]]:
        """Convert InChI to CAS number(s)."""
        result = self.get_by_inchi(inchi)
        return result['cas_numbers'] if result else None

    def cid_to_cas(self, cid: int) -> Optional[List[str]]:
        """Convert PubChem CID to CAS number(s)."""
        result = self.get_by_cid(cid)
        return result['cas_numbers'] if result else None

    def cid_to_inchikey(self, cid: int) -> Optional[str]:
        """Convert PubChem CID to InChIKey."""
        result = self.get_by_cid(cid)
        return result['inchikey'] if result else None

    def cid_to_inchi(self, cid: int) -> Optional[str]:
        """Convert PubChem CID to InChI."""
        result = self.get_by_cid(cid)
        return result['inchi'] if result else None

    # Batch conversion methods

    def batch_cas_to_cid(self, cas_list: List[str]) -> Dict[str, Optional[int]]:
        """
        Convert multiple CAS numbers to CIDs.

        Args:
            cas_list (list): List of CAS numbers

        Returns:
            dict: Mapping of CAS -> CID (None if not found)

        Example:
            >>> db = PubChemID()
            >>> results = db.batch_cas_to_cid(["50-78-2", "50-00-0"])
            >>> print(results)
            {'50-78-2': 2244, '50-00-0': 712}
        """
        results = {}
        for cas in cas_list:
            results[cas] = self.cas_to_cid(cas)
        return results

    def batch_cas_to_inchikey(self, cas_list: List[str]) -> Dict[str, Optional[str]]:
        """Convert multiple CAS numbers to InChIKeys."""
        results = {}
        for cas in cas_list:
            results[cas] = self.cas_to_inchikey(cas)
        return results

    def batch_cid_to_cas(self, cid_list: List[int]) -> Dict[int, Optional[List[str]]]:
        """Convert multiple CIDs to CAS numbers."""
        results = {}
        for cid in cid_list:
            results[cid] = self.cid_to_cas(cid)
        return results

    def get_by_cas_batch(self, cas_list: List[str]) -> 'pd.DataFrame':
        """
        Get complete compound information for multiple CAS numbers as a DataFrame.

        This method returns all available data including identifiers, chemical properties,
        and physical properties for each CAS number.

        Args:
            cas_list (list): List of CAS Registry Numbers

        Returns:
            pandas.DataFrame: DataFrame with columns for all compound properties including:
                             cid, cas, inchi, inchikey, smiles, cmpdname, iupacname, mf, mw,
                             polararea, complexity, xlogp, heavycnt, hbonddonor, hbondacc,
                             rotbonds, exactmass, charge, cidcdate

        Example:
            >>> db = PubChemID()
            >>> cas_list = ["50-78-2", "50-00-0", "64-17-5"]
            >>> df = db.get_by_cas_batch(cas_list)
            >>> print(df[['cas', 'cmpdname', 'mf', 'mw']])
        """

        rows = []
        for cas in cas_list:
            result = self.get_by_cas(cas)
            if result:
                # Create row with all properties
                row = {
                    'cid': result.get('cid'),
                    'cas': cas,
                    'inchi': result.get('inchi', ''),
                    'inchikey': result.get('inchikey', ''),
                    'smiles': result.get('smiles', ''),
                    'cmpdname': result.get('cmpdname', ''),
                    'iupacname': result.get('iupacname', ''),
                    'mf': result.get('mf', ''),
                    'mw': result.get('mw'),
                    'polararea': result.get('polararea'),
                    'complexity': result.get('complexity'),
                    'xlogp': result.get('xlogp'),
                    'heavycnt': result.get('heavycnt'),
                    'hbonddonor': result.get('hbonddonor'),
                    'hbondacc': result.get('hbondacc'),
                    'rotbonds': result.get('rotbonds'),
                    'exactmass': result.get('exactmass'),
                    'charge': result.get('charge'),
                    'cidcdate': result.get('cidcdate', '')
                }
                rows.append(row)

        if not rows:
            # Return empty DataFrame with correct columns
            return pd.DataFrame(columns=[
                'cid', 'cas', 'inchi', 'inchikey', 'smiles', 'cmpdname', 'iupacname',
                'mf', 'mw', 'polararea', 'complexity', 'xlogp', 'heavycnt',
                'hbonddonor', 'hbondacc', 'rotbonds', 'exactmass', 'charge', 'cidcdate'
            ])

        return pd.DataFrame(rows)

    def get_id_table_from_cas(self, cas: str) -> Optional['pd.DataFrame']:
        """
        Get identifier table for a CAS number (similar to ZeroPM format).

        Args:
            cas (str): CAS Registry Number

        Returns:
            pandas.DataFrame: Table with columns [cid, cas, inchi, inchikey, smiles, 
                             cmpdname, mf, mw] or None if not found

        Example:
            >>> db = PubChemID()
            >>> df = db.get_id_table_from_cas("50-78-2")
            >>> print(df)
        """
        import pandas as pd

        result = self.get_by_cas(cas)
        if not result:
            return None

        # Create DataFrame with main identifiers and properties
        df = pd.DataFrame([{
            'cid': result['cid'],
            'cas': cas,
            'inchi': result.get('inchi', ''),
            'inchikey': result.get('inchikey', ''),
            'smiles': result.get('smiles', ''),
            'cmpdname': result.get('cmpdname', ''),
            'mf': result.get('mf', ''),
            'mw': result.get('mw', None)
        }])

        return df

    def batch_get_id_table_from_cas(self, cas_list: List[str]) -> 'pd.DataFrame':
        """
        Get identifier tables for multiple CAS numbers.

        Args:
            cas_list (list): List of CAS Registry Numbers

        Returns:
            pandas.DataFrame: Combined table for all CAS numbers

        Example:
            >>> db = PubChemID()
            >>> df = db.batch_get_id_table_from_cas(["50-78-2", "50-00-0"])
            >>> print(df)
        """
        import pandas as pd

        tables = []
        for cas in cas_list:
            df = self.get_id_table_from_cas(cas)
            if df is not None:
                tables.append(df)

        if not tables:
            # Return empty DataFrame with correct columns
            return pd.DataFrame(columns=['cid', 'cas', 'inchi', 'inchikey', 
                                        'smiles', 'cmpdname', 'mf', 'mw'])

        return pd.concat(tables, ignore_index=True)

    def get_stats(self) -> Dict[str, int]:
        """
        Get database statistics.

        Returns:
            dict: Statistics about the database

        Example:
            >>> db = PubChemID()
            >>> stats = db.get_stats()
            >>> print(f"Total compounds: {stats['total_compounds']:,}")
        """
        cursor = self.conn.cursor()

        cursor.execute("SELECT COUNT(*) FROM compounds")
        total_compounds = cursor.fetchone()[0]

        cursor.execute("SELECT COUNT(*) FROM cas_numbers")
        total_cas = cursor.fetchone()[0]

        cursor.execute("SELECT COUNT(DISTINCT cid) FROM cas_numbers")
        compounds_with_cas = cursor.fetchone()[0]

        cursor.execute("SELECT COUNT(*) FROM synonyms")
        total_synonyms = cursor.fetchone()[0]

        cursor.execute("SELECT COUNT(*) FROM compounds WHERE inchikey IS NOT NULL AND inchikey != ''")
        compounds_with_inchikey = cursor.fetchone()[0]

        return {
            'total_compounds': total_compounds,
            'total_cas_numbers': total_cas,
            'compounds_with_cas': compounds_with_cas,
            'total_synonyms': total_synonyms,
            'compounds_with_inchikey': compounds_with_inchikey,
            'database_path': self.db_path,
            'database_size_mb': os.path.getsize(self.db_path) / (1024**2)
        }
Functions
__init__(db_path=None, auto_download=True)

Initialize PubChemID database connection.

Parameters:

Name Type Description Default
db_path str

Path to SQLite database. If None, uses default location in data directory.

None
auto_download bool

If True, automatically download database if not found. Default is True.

True

Raises:

Type Description
FileNotFoundError

If database file doesn't exist and auto_download is False

Source code in src/provesid/pubchem.py
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
def __init__(self, db_path: Optional[str] = None, auto_download: bool = True):
    """
    Initialize PubChemID database connection.

    Args:
        db_path (str, optional): Path to SQLite database. If None, uses default
                                location in data directory.
        auto_download (bool): If True, automatically download database if not found.
                             Default is True.

    Raises:
        FileNotFoundError: If database file doesn't exist and auto_download is False
    """
    import sqlite3
    from .utils import data_path

    if db_path is None:
        db_path = os.path.join(data_path(), 'pubchem_id.db')

    self.db_path = db_path

    if not os.path.exists(db_path):
        if auto_download:
            print(f"Database not found at {db_path}")
            print("Attempting to download from Zenodo...")
            self.download_database()
        else:
            raise FileNotFoundError(
                f"PubChem ID database not found at {db_path}. "
                "Set auto_download=True or run scripts/build_pubchem_id_db.py to create it."
            )

    self.conn = sqlite3.connect(db_path)
    self.conn.row_factory = sqlite3.Row  # Access columns by name
__del__()

Close database connection on deletion.

Source code in src/provesid/pubchem.py
1575
1576
1577
1578
def __del__(self):
    """Close database connection on deletion."""
    if hasattr(self, 'conn'):
        self.conn.close()
download_database(db_path=None, zenodo_url=None) staticmethod

Download PubChem ID database from Zenodo.

Parameters:

Name Type Description Default
db_path str

Path where to save the database. If None, uses default location in data directory.

None
zenodo_url str

URL to download from. If None, uses default Zenodo URL. Format: https://zenodo.org/record/XXXXXX/files/pubchem_id.db

None

Returns:

Name Type Description
str str

Path to the downloaded database file

Example

from provesid import PubChemID

Download to default location

PubChemID.download_database()

Or specify custom location

PubChemID.download_database(db_path='/path/to/pubchem_id.db')

Note

After uploading to Zenodo, update the zenodo_url parameter with the actual URL. The database file is ~2.2 GB, so download may take several minutes.

Source code in src/provesid/pubchem.py
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
@staticmethod
def download_database(db_path: Optional[str] = None, zenodo_url: Optional[str] = None) -> str:
    """
    Download PubChem ID database from Zenodo.

    Args:
        db_path (str, optional): Path where to save the database. If None, uses default
                                location in data directory.
        zenodo_url (str, optional): URL to download from. If None, uses default Zenodo URL.
                                   Format: https://zenodo.org/record/XXXXXX/files/pubchem_id.db

    Returns:
        str: Path to the downloaded database file

    Example:
        >>> from provesid import PubChemID
        >>> # Download to default location
        >>> PubChemID.download_database()
        >>> 
        >>> # Or specify custom location
        >>> PubChemID.download_database(db_path='/path/to/pubchem_id.db')

    Note:
        After uploading to Zenodo, update the zenodo_url parameter with the actual URL.
        The database file is ~2.2 GB, so download may take several minutes.
    """
    import requests
    from .utils import data_path
    from tqdm import tqdm

    if db_path is None:
        db_path = os.path.join(data_path(), 'pubchem_id.db')

    if zenodo_url is None:
        zenodo_url = "https://zenodo.org/records/18173204/files/pubchem_id.db"

    print(f"Downloading PubChem ID database from Zenodo...")
    print(f"URL: {zenodo_url}")
    print(f"Destination: {db_path}")
    print("This is a large file (~2.2 GB), please be patient...")

    # Create temporary file path
    temp_path = db_path + '.tmp'

    try:
        # Download with progress bar
        response = requests.get(zenodo_url, stream=True)
        response.raise_for_status()

        total_size = int(response.headers.get('content-length', 0))

        with open(temp_path, 'wb') as f:
            with tqdm(total=total_size, unit='B', unit_scale=True, desc="Downloading") as pbar:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        f.write(chunk)
                        pbar.update(len(chunk))

        print("Download complete. Verifying...")

        # Verify it's a valid SQLite database
        import sqlite3
        try:
            conn = sqlite3.connect(temp_path)
            cursor = conn.cursor()
            cursor.execute("SELECT COUNT(*) FROM compounds")
            count = cursor.fetchone()[0]
            conn.close()
            print(f"✓ Database verified: {count:,} compounds")
        except Exception as e:
            raise RuntimeError(f"Downloaded file is not a valid database: {e}")

        # Move to final location
        if os.path.exists(db_path):
            os.remove(db_path)
        os.rename(temp_path, db_path)

        print(f"✓ Database ready at {db_path}")
        return db_path

    except requests.exceptions.RequestException as e:
        if os.path.exists(temp_path):
            os.remove(temp_path)
        raise RuntimeError(f"Failed to download database: {e}")
    except Exception as e:
        if os.path.exists(temp_path):
            os.remove(temp_path)
        raise RuntimeError(f"Error during download: {e}")
get_by_cid(cid)

Get compound information by PubChem CID.

Parameters:

Name Type Description Default
cid int

PubChem Compound ID

required

Returns:

Name Type Description
dict Optional[Dict[str, Any]]

Compound information including identifiers and properties, or None if not found

Example

db = PubChemID() result = db.get_by_cid(2244) # Aspirin print(result['cmpdname']) 'Aspirin'

Source code in src/provesid/pubchem.py
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
def get_by_cid(self, cid: int) -> Optional[Dict[str, Any]]:
    """
    Get compound information by PubChem CID.

    Args:
        cid (int): PubChem Compound ID

    Returns:
        dict: Compound information including identifiers and properties, or None if not found

    Example:
        >>> db = PubChemID()
        >>> result = db.get_by_cid(2244)  # Aspirin
        >>> print(result['cmpdname'])
        'Aspirin'
    """
    cursor = self.conn.cursor()
    cursor.execute("""
        SELECT * FROM compounds WHERE cid = ?
    """, (cid,))

    row = cursor.fetchone()
    if not row:
        return None

    result = dict(row)

    # Add CAS numbers
    cursor.execute("""
        SELECT cas FROM cas_numbers WHERE cid = ?
    """, (cid,))
    result['cas_numbers'] = [r[0] for r in cursor.fetchall()]

    # Add synonyms
    cursor.execute("""
        SELECT synonym FROM synonyms WHERE cid = ? LIMIT 100
    """, (cid,))
    result['synonyms'] = [r[0] for r in cursor.fetchall()]

    return result
get_by_cas(cas)

Get compound information by CAS Registry Number.

Parameters:

Name Type Description Default
cas str

CAS Registry Number (e.g., "50-78-2")

required

Returns:

Name Type Description
dict Optional[Dict[str, Any]]

Compound information, or None if not found

Example

db = PubChemID() result = db.get_by_cas("50-78-2") # Aspirin print(result['inchi'])

Source code in src/provesid/pubchem.py
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
def get_by_cas(self, cas: str) -> Optional[Dict[str, Any]]:
    """
    Get compound information by CAS Registry Number.

    Args:
        cas (str): CAS Registry Number (e.g., "50-78-2")

    Returns:
        dict: Compound information, or None if not found

    Example:
        >>> db = PubChemID()
        >>> result = db.get_by_cas("50-78-2")  # Aspirin
        >>> print(result['inchi'])
    """
    cursor = self.conn.cursor()
    cursor.execute("""
        SELECT cid FROM cas_numbers WHERE cas = ? LIMIT 1
    """, (cas,))

    row = cursor.fetchone()
    if not row:
        return None

    return self.get_by_cid(row[0])
get_by_inchikey(inchikey)

Get compound information by InChIKey.

Parameters:

Name Type Description Default
inchikey str

Standard InChIKey (27 characters)

required

Returns:

Name Type Description
dict Optional[Dict[str, Any]]

Compound information, or None if not found

Example

db = PubChemID() result = db.get_by_inchikey("BSYNRYMUTXBXSQ-UHFFFAOYSA-N") print(result['cmpdname'])

Source code in src/provesid/pubchem.py
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
def get_by_inchikey(self, inchikey: str) -> Optional[Dict[str, Any]]:
    """
    Get compound information by InChIKey.

    Args:
        inchikey (str): Standard InChIKey (27 characters)

    Returns:
        dict: Compound information, or None if not found

    Example:
        >>> db = PubChemID()
        >>> result = db.get_by_inchikey("BSYNRYMUTXBXSQ-UHFFFAOYSA-N")
        >>> print(result['cmpdname'])
    """
    cursor = self.conn.cursor()
    cursor.execute("""
        SELECT * FROM compounds WHERE inchikey = ?
    """, (inchikey,))

    row = cursor.fetchone()
    if not row:
        return None

    cid = row['cid']
    return self.get_by_cid(cid)
get_by_inchi(inchi)

Get compound information by InChI string.

Parameters:

Name Type Description Default
inchi str

Standard InChI string

required

Returns:

Name Type Description
dict Optional[Dict[str, Any]]

Compound information, or None if not found

Example

db = PubChemID() result = db.get_by_inchi("InChI=1S/C9H8O4/c1-6(10)...") print(result['cmpdname'])

Source code in src/provesid/pubchem.py
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
def get_by_inchi(self, inchi: str) -> Optional[Dict[str, Any]]:
    """
    Get compound information by InChI string.

    Args:
        inchi (str): Standard InChI string

    Returns:
        dict: Compound information, or None if not found

    Example:
        >>> db = PubChemID()
        >>> result = db.get_by_inchi("InChI=1S/C9H8O4/c1-6(10)...")
        >>> print(result['cmpdname'])
    """
    cursor = self.conn.cursor()
    cursor.execute("""
        SELECT * FROM compounds WHERE inchi = ?
    """, (inchi,))

    row = cursor.fetchone()
    if not row:
        return None

    cid = row['cid']
    return self.get_by_cid(cid)
search_by_name(name, exact=False, limit=10)

Search compounds by name or synonym.

Parameters:

Name Type Description Default
name str

Compound name or synonym to search for

required
exact bool

If True, exact match only. If False, partial match (case-insensitive)

False
limit int

Maximum number of results to return

10

Returns:

Name Type Description
list List[Dict[str, Any]]

List of matching compounds

Example

db = PubChemID() results = db.search_by_name("aspirin", exact=False) for r in results: ... print(r['cid'], r['cmpdname'])

Source code in src/provesid/pubchem.py
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
def search_by_name(self, name: str, exact: bool = False, limit: int = 10) -> List[Dict[str, Any]]:
    """
    Search compounds by name or synonym.

    Args:
        name (str): Compound name or synonym to search for
        exact (bool): If True, exact match only. If False, partial match (case-insensitive)
        limit (int): Maximum number of results to return

    Returns:
        list: List of matching compounds

    Example:
        >>> db = PubChemID()
        >>> results = db.search_by_name("aspirin", exact=False)
        >>> for r in results:
        ...     print(r['cid'], r['cmpdname'])
    """
    cursor = self.conn.cursor()

    results = []

    if exact:
        # Search in main compound name
        cursor.execute("""
            SELECT cid FROM compounds WHERE cmpdname = ? LIMIT ?
        """, (name, limit))

        cids = [r[0] for r in cursor.fetchall()]

        # Also search in synonyms
        if len(cids) < limit:
            cursor.execute("""
                SELECT DISTINCT cid FROM synonyms WHERE synonym = ? LIMIT ?
            """, (name, limit - len(cids)))
            cids.extend([r[0] for r in cursor.fetchall()])
    else:
        # Partial match with LIKE
        search_term = f"%{name}%"

        # Search in main compound name
        cursor.execute("""
            SELECT cid FROM compounds WHERE cmpdname LIKE ? LIMIT ?
        """, (search_term, limit))

        cids = [r[0] for r in cursor.fetchall()]

        # Also search in synonyms
        if len(cids) < limit:
            cursor.execute("""
                SELECT DISTINCT cid FROM synonyms WHERE synonym LIKE ? LIMIT ?
            """, (search_term, limit - len(cids)))
            cids.extend([r[0] for r in cursor.fetchall()])

    # Get full compound info for each CID
    for cid in cids[:limit]:
        compound = self.get_by_cid(cid)
        if compound:
            results.append(compound)

    return results
search_by_formula(formula, limit=100)

Search compounds by molecular formula.

Parameters:

Name Type Description Default
formula str

Molecular formula (e.g., "C9H8O4")

required
limit int

Maximum number of results to return

100

Returns:

Name Type Description
list List[Dict[str, Any]]

List of matching compounds

Example

db = PubChemID() results = db.search_by_formula("C9H8O4") print(f"Found {len(results)} compounds with formula C9H8O4")

Source code in src/provesid/pubchem.py
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
def search_by_formula(self, formula: str, limit: int = 100) -> List[Dict[str, Any]]:
    """
    Search compounds by molecular formula.

    Args:
        formula (str): Molecular formula (e.g., "C9H8O4")
        limit (int): Maximum number of results to return

    Returns:
        list: List of matching compounds

    Example:
        >>> db = PubChemID()
        >>> results = db.search_by_formula("C9H8O4")
        >>> print(f"Found {len(results)} compounds with formula C9H8O4")
    """
    cursor = self.conn.cursor()
    cursor.execute("""
        SELECT cid FROM compounds WHERE mf = ? LIMIT ?
    """, (formula, limit))

    results = []
    for row in cursor.fetchall():
        compound = self.get_by_cid(row[0])
        if compound:
            results.append(compound)

    return results
cas_to_cid(cas)

Convert CAS number to PubChem CID.

Source code in src/provesid/pubchem.py
1883
1884
1885
1886
def cas_to_cid(self, cas: str) -> Optional[int]:
    """Convert CAS number to PubChem CID."""
    result = self.get_by_cas(cas)
    return result['cid'] if result else None
cas_to_inchi(cas)

Convert CAS number to InChI.

Source code in src/provesid/pubchem.py
1888
1889
1890
1891
def cas_to_inchi(self, cas: str) -> Optional[str]:
    """Convert CAS number to InChI."""
    result = self.get_by_cas(cas)
    return result['inchi'] if result else None
cas_to_inchikey(cas)

Convert CAS number to InChIKey.

Source code in src/provesid/pubchem.py
1893
1894
1895
1896
def cas_to_inchikey(self, cas: str) -> Optional[str]:
    """Convert CAS number to InChIKey."""
    result = self.get_by_cas(cas)
    return result['inchikey'] if result else None
cas_to_smiles(cas)

Convert CAS number to SMILES.

Source code in src/provesid/pubchem.py
1898
1899
1900
1901
def cas_to_smiles(self, cas: str) -> Optional[str]:
    """Convert CAS number to SMILES."""
    result = self.get_by_cas(cas)
    return result['smiles'] if result else None
inchikey_to_cid(inchikey)

Convert InChIKey to PubChem CID.

Source code in src/provesid/pubchem.py
1903
1904
1905
1906
def inchikey_to_cid(self, inchikey: str) -> Optional[int]:
    """Convert InChIKey to PubChem CID."""
    result = self.get_by_inchikey(inchikey)
    return result['cid'] if result else None
inchikey_to_cas(inchikey)

Convert InChIKey to CAS number(s).

Source code in src/provesid/pubchem.py
1908
1909
1910
1911
def inchikey_to_cas(self, inchikey: str) -> Optional[List[str]]:
    """Convert InChIKey to CAS number(s)."""
    result = self.get_by_inchikey(inchikey)
    return result['cas_numbers'] if result else None
inchi_to_cid(inchi)

Convert InChI to PubChem CID.

Source code in src/provesid/pubchem.py
1913
1914
1915
1916
def inchi_to_cid(self, inchi: str) -> Optional[int]:
    """Convert InChI to PubChem CID."""
    result = self.get_by_inchi(inchi)
    return result['cid'] if result else None
inchi_to_cas(inchi)

Convert InChI to CAS number(s).

Source code in src/provesid/pubchem.py
1918
1919
1920
1921
def inchi_to_cas(self, inchi: str) -> Optional[List[str]]:
    """Convert InChI to CAS number(s)."""
    result = self.get_by_inchi(inchi)
    return result['cas_numbers'] if result else None
cid_to_cas(cid)

Convert PubChem CID to CAS number(s).

Source code in src/provesid/pubchem.py
1923
1924
1925
1926
def cid_to_cas(self, cid: int) -> Optional[List[str]]:
    """Convert PubChem CID to CAS number(s)."""
    result = self.get_by_cid(cid)
    return result['cas_numbers'] if result else None
cid_to_inchikey(cid)

Convert PubChem CID to InChIKey.

Source code in src/provesid/pubchem.py
1928
1929
1930
1931
def cid_to_inchikey(self, cid: int) -> Optional[str]:
    """Convert PubChem CID to InChIKey."""
    result = self.get_by_cid(cid)
    return result['inchikey'] if result else None
cid_to_inchi(cid)

Convert PubChem CID to InChI.

Source code in src/provesid/pubchem.py
1933
1934
1935
1936
def cid_to_inchi(self, cid: int) -> Optional[str]:
    """Convert PubChem CID to InChI."""
    result = self.get_by_cid(cid)
    return result['inchi'] if result else None
batch_cas_to_cid(cas_list)

Convert multiple CAS numbers to CIDs.

Parameters:

Name Type Description Default
cas_list list

List of CAS numbers

required

Returns:

Name Type Description
dict Dict[str, Optional[int]]

Mapping of CAS -> CID (None if not found)

Example

db = PubChemID() results = db.batch_cas_to_cid(["50-78-2", "50-00-0"]) print(results) {'50-78-2': 2244, '50-00-0': 712}

Source code in src/provesid/pubchem.py
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
def batch_cas_to_cid(self, cas_list: List[str]) -> Dict[str, Optional[int]]:
    """
    Convert multiple CAS numbers to CIDs.

    Args:
        cas_list (list): List of CAS numbers

    Returns:
        dict: Mapping of CAS -> CID (None if not found)

    Example:
        >>> db = PubChemID()
        >>> results = db.batch_cas_to_cid(["50-78-2", "50-00-0"])
        >>> print(results)
        {'50-78-2': 2244, '50-00-0': 712}
    """
    results = {}
    for cas in cas_list:
        results[cas] = self.cas_to_cid(cas)
    return results
batch_cas_to_inchikey(cas_list)

Convert multiple CAS numbers to InChIKeys.

Source code in src/provesid/pubchem.py
1961
1962
1963
1964
1965
1966
def batch_cas_to_inchikey(self, cas_list: List[str]) -> Dict[str, Optional[str]]:
    """Convert multiple CAS numbers to InChIKeys."""
    results = {}
    for cas in cas_list:
        results[cas] = self.cas_to_inchikey(cas)
    return results
batch_cid_to_cas(cid_list)

Convert multiple CIDs to CAS numbers.

Source code in src/provesid/pubchem.py
1968
1969
1970
1971
1972
1973
def batch_cid_to_cas(self, cid_list: List[int]) -> Dict[int, Optional[List[str]]]:
    """Convert multiple CIDs to CAS numbers."""
    results = {}
    for cid in cid_list:
        results[cid] = self.cid_to_cas(cid)
    return results
get_by_cas_batch(cas_list)

Get complete compound information for multiple CAS numbers as a DataFrame.

This method returns all available data including identifiers, chemical properties, and physical properties for each CAS number.

Parameters:

Name Type Description Default
cas_list list

List of CAS Registry Numbers

required

Returns:

Type Description
DataFrame

pandas.DataFrame: DataFrame with columns for all compound properties including: cid, cas, inchi, inchikey, smiles, cmpdname, iupacname, mf, mw, polararea, complexity, xlogp, heavycnt, hbonddonor, hbondacc, rotbonds, exactmass, charge, cidcdate

Example

db = PubChemID() cas_list = ["50-78-2", "50-00-0", "64-17-5"] df = db.get_by_cas_batch(cas_list) print(df[['cas', 'cmpdname', 'mf', 'mw']])

Source code in src/provesid/pubchem.py
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
def get_by_cas_batch(self, cas_list: List[str]) -> 'pd.DataFrame':
    """
    Get complete compound information for multiple CAS numbers as a DataFrame.

    This method returns all available data including identifiers, chemical properties,
    and physical properties for each CAS number.

    Args:
        cas_list (list): List of CAS Registry Numbers

    Returns:
        pandas.DataFrame: DataFrame with columns for all compound properties including:
                         cid, cas, inchi, inchikey, smiles, cmpdname, iupacname, mf, mw,
                         polararea, complexity, xlogp, heavycnt, hbonddonor, hbondacc,
                         rotbonds, exactmass, charge, cidcdate

    Example:
        >>> db = PubChemID()
        >>> cas_list = ["50-78-2", "50-00-0", "64-17-5"]
        >>> df = db.get_by_cas_batch(cas_list)
        >>> print(df[['cas', 'cmpdname', 'mf', 'mw']])
    """

    rows = []
    for cas in cas_list:
        result = self.get_by_cas(cas)
        if result:
            # Create row with all properties
            row = {
                'cid': result.get('cid'),
                'cas': cas,
                'inchi': result.get('inchi', ''),
                'inchikey': result.get('inchikey', ''),
                'smiles': result.get('smiles', ''),
                'cmpdname': result.get('cmpdname', ''),
                'iupacname': result.get('iupacname', ''),
                'mf': result.get('mf', ''),
                'mw': result.get('mw'),
                'polararea': result.get('polararea'),
                'complexity': result.get('complexity'),
                'xlogp': result.get('xlogp'),
                'heavycnt': result.get('heavycnt'),
                'hbonddonor': result.get('hbonddonor'),
                'hbondacc': result.get('hbondacc'),
                'rotbonds': result.get('rotbonds'),
                'exactmass': result.get('exactmass'),
                'charge': result.get('charge'),
                'cidcdate': result.get('cidcdate', '')
            }
            rows.append(row)

    if not rows:
        # Return empty DataFrame with correct columns
        return pd.DataFrame(columns=[
            'cid', 'cas', 'inchi', 'inchikey', 'smiles', 'cmpdname', 'iupacname',
            'mf', 'mw', 'polararea', 'complexity', 'xlogp', 'heavycnt',
            'hbonddonor', 'hbondacc', 'rotbonds', 'exactmass', 'charge', 'cidcdate'
        ])

    return pd.DataFrame(rows)
get_id_table_from_cas(cas)

Get identifier table for a CAS number (similar to ZeroPM format).

Parameters:

Name Type Description Default
cas str

CAS Registry Number

required

Returns:

Type Description
Optional[DataFrame]

pandas.DataFrame: Table with columns [cid, cas, inchi, inchikey, smiles, cmpdname, mf, mw] or None if not found

Example

db = PubChemID() df = db.get_id_table_from_cas("50-78-2") print(df)

Source code in src/provesid/pubchem.py
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
def get_id_table_from_cas(self, cas: str) -> Optional['pd.DataFrame']:
    """
    Get identifier table for a CAS number (similar to ZeroPM format).

    Args:
        cas (str): CAS Registry Number

    Returns:
        pandas.DataFrame: Table with columns [cid, cas, inchi, inchikey, smiles, 
                         cmpdname, mf, mw] or None if not found

    Example:
        >>> db = PubChemID()
        >>> df = db.get_id_table_from_cas("50-78-2")
        >>> print(df)
    """
    import pandas as pd

    result = self.get_by_cas(cas)
    if not result:
        return None

    # Create DataFrame with main identifiers and properties
    df = pd.DataFrame([{
        'cid': result['cid'],
        'cas': cas,
        'inchi': result.get('inchi', ''),
        'inchikey': result.get('inchikey', ''),
        'smiles': result.get('smiles', ''),
        'cmpdname': result.get('cmpdname', ''),
        'mf': result.get('mf', ''),
        'mw': result.get('mw', None)
    }])

    return df
batch_get_id_table_from_cas(cas_list)

Get identifier tables for multiple CAS numbers.

Parameters:

Name Type Description Default
cas_list list

List of CAS Registry Numbers

required

Returns:

Type Description
DataFrame

pandas.DataFrame: Combined table for all CAS numbers

Example

db = PubChemID() df = db.batch_get_id_table_from_cas(["50-78-2", "50-00-0"]) print(df)

Source code in src/provesid/pubchem.py
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
def batch_get_id_table_from_cas(self, cas_list: List[str]) -> 'pd.DataFrame':
    """
    Get identifier tables for multiple CAS numbers.

    Args:
        cas_list (list): List of CAS Registry Numbers

    Returns:
        pandas.DataFrame: Combined table for all CAS numbers

    Example:
        >>> db = PubChemID()
        >>> df = db.batch_get_id_table_from_cas(["50-78-2", "50-00-0"])
        >>> print(df)
    """
    import pandas as pd

    tables = []
    for cas in cas_list:
        df = self.get_id_table_from_cas(cas)
        if df is not None:
            tables.append(df)

    if not tables:
        # Return empty DataFrame with correct columns
        return pd.DataFrame(columns=['cid', 'cas', 'inchi', 'inchikey', 
                                    'smiles', 'cmpdname', 'mf', 'mw'])

    return pd.concat(tables, ignore_index=True)
get_stats()

Get database statistics.

Returns:

Name Type Description
dict Dict[str, int]

Statistics about the database

Example

db = PubChemID() stats = db.get_stats() print(f"Total compounds: {stats['total_compounds']:,}")

Source code in src/provesid/pubchem.py
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
def get_stats(self) -> Dict[str, int]:
    """
    Get database statistics.

    Returns:
        dict: Statistics about the database

    Example:
        >>> db = PubChemID()
        >>> stats = db.get_stats()
        >>> print(f"Total compounds: {stats['total_compounds']:,}")
    """
    cursor = self.conn.cursor()

    cursor.execute("SELECT COUNT(*) FROM compounds")
    total_compounds = cursor.fetchone()[0]

    cursor.execute("SELECT COUNT(*) FROM cas_numbers")
    total_cas = cursor.fetchone()[0]

    cursor.execute("SELECT COUNT(DISTINCT cid) FROM cas_numbers")
    compounds_with_cas = cursor.fetchone()[0]

    cursor.execute("SELECT COUNT(*) FROM synonyms")
    total_synonyms = cursor.fetchone()[0]

    cursor.execute("SELECT COUNT(*) FROM compounds WHERE inchikey IS NOT NULL AND inchikey != ''")
    compounds_with_inchikey = cursor.fetchone()[0]

    return {
        'total_compounds': total_compounds,
        'total_cas_numbers': total_cas,
        'compounds_with_cas': compounds_with_cas,
        'total_synonyms': total_synonyms,
        'compounds_with_inchikey': compounds_with_inchikey,
        'database_path': self.db_path,
        'database_size_mb': os.path.getsize(self.db_path) / (1024**2)
    }

Functions

Quick Start

from provesid import PubChemAPI, Domain, CompoundProperties

# Initialize the API client
pc = PubChemAPI()

# Search for compounds by name
cids = pc.get_cids_by_name('aspirin')
print(f"Found CIDs: {cids}")

# Get basic compound information
basic_info = pc.get_basic_compound_info(cids[0])
print(f"Molecular Formula: {basic_info['MolecularFormula']}")
print(f"Molecular Weight: {basic_info['MolecularWeight']}")

# Get compound by CID (improved - no wrapper needed!)
compound = pc.get_compound_by_cid(cids[0])
print(f"Compound keys: {list(compound.keys())}")

Key Improvements

Elegant Data Access ✨

Before (redundant wrapper access):

# Old way required nested access
substance = pc.get_substance_by_sid(sid)
data = substance["PC_Substances"][0]  # Redundant wrapper

compound = pc.get_compound_by_cid(cid)
data = compound["PC_Compounds"][0]    # Redundant wrapper

Now (direct access):

# New way provides direct access
substance = pc.get_substance_by_sid(sid)  # Direct access!
compound = pc.get_compound_by_cid(cid)    # Direct access!

Enhanced Search Methods

Multiple Search Domains

# Search in compound domain (default)
cids = pc.get_cids_by_name('aspirin', domain=Domain.COMPOUND)

# Search in substance domain  
cids = pc.get_cids_by_name('8000-78-0', domain=Domain.SUBSTANCE)

# Comprehensive search across both domains
results = pc.find_cids_comprehensive('8000-78-0')

Structure-Based Searching

# Search by SMILES (now returns clean list)
smiles = "CC(=O)OC1=CC=CC=C1C(=O)O"  # aspirin
cids = pc.get_cids_by_smiles(smiles)

# Search by InChI Key (newly implemented)
inchi_key = "BSYNRYMUTXBXSQ-UHFFFAOYSA-N"  # aspirin
cids = pc.get_cids_by_inchikey(inchi_key)

# Get compound records directly
compound = pc.get_compounds_by_smiles(smiles)
compound = pc.get_compounds_by_inchikey(inchi_key)

Available Methods

Compound Search Methods

  • get_cids_by_name() - Search by compound name
  • get_cids_by_smiles() - Search by SMILES string
  • get_cids_by_inchikey() - Search by InChI Key ✨ New
  • find_cids_comprehensive() - Multi-domain search

Compound Data Methods

  • get_compound_by_cid() - Get compound record ✨ Improved
  • get_compounds_by_name() - Get compounds by name ✨ Improved
  • get_compounds_by_smiles() - Get compounds by SMILES ✨ Improved
  • get_compounds_by_inchikey() - Get compounds by InChI Key ✨ Improved

Substance Methods

  • get_substance_by_sid() - Get substance record ✨ Improved
  • get_substances_by_name() - Get substances by name ✨ Improved
  • get_sids_by_name() - Search for substance IDs

Property Methods

  • get_basic_compound_info() - Essential compound properties
  • get_compound_properties() - Selected properties
  • get_all_compound_info() - All available properties
  • get_compound_properties_batch() - Batch processing

Utility Methods

  • get_compound_synonyms() - Get compound synonyms
  • get_compound_identifiers() - Extract specific identifiers

Batch Processing

# Process multiple compounds efficiently
compound_names = ["aspirin", "caffeine", "acetaminophen", "ibuprofen"]
all_cids = []

for name in compound_names:
    cids = pc.get_cids_by_name(name)
    if cids:
        all_cids.append(cids[0])

# Batch property retrieval
properties = [CompoundProperties.MOLECULAR_WEIGHT, 
              CompoundProperties.MOLECULAR_FORMULA,
              CompoundProperties.SMILES]

batch_results = pc.get_compound_properties_batch(all_cids, properties)

Error Handling

from provesid import PubChemNotFoundError, PubChemError

try:
    cids = pc.get_cids_by_name('invalid_compound_name')
    if not cids:
        print("No compounds found")
except PubChemNotFoundError:
    print("Compound not found in PubChem")
except PubChemError as e:
    print(f"PubChem API error: {e}")

Best Practices

  • Use batch methods for multiple compounds
  • Always handle potential errors with try/except blocks
  • Use domain-specific searches when appropriate
  • Check data availability before processing
  • Respect PubChem's rate limits (built into the API)

Tutorial

For a comprehensive tutorial with examples, see: PubChem Tutorial